IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i22p4532-d287575.html
   My bibliography  Save this article

Prolongation of Tick-Borne Encephalitis Cycles in Warmer Climatic Conditions

Author

Listed:
  • Petr Zeman

    (Medical Laboratories, Konevova 205, 130 00 Prague, Czech Republic)

Abstract

Tick-borne encephalitis exhibits profound inter-annual fluctuations in incidence. Previous studies showed that three-fifths of the variation can be explained in terms of four superimposed oscillations: a quasi-biennial, triennial, pentennial, and a decadal cycle. This study was conducted to determine how these cycles could be influenced by climate change. Epidemiological data, spanning from the 1970s to the present, and originating from six regions/countries bridging Scandinavia and the Mediterranean, represented a temporal/latitudinal gradient. Spectral analysis of time series was used to determine variation in the cycles’ length/amplitude with respect to these gradients. The analysis showed that—whereas the lengths of the shorter cycles do not vary substantially—cycles in the decadal band tend to be longer southwards. When comparing the disease’s oscillations before- and after the mid-1990s, a shift towards longer oscillations was detected in the pentennial–decadal band, but not in the biennial– triennial band. Simultaneously, oscillations in the latter band increased in intensity whereas the decadal oscillations weakened. In summary, the rhythm of the cycles has been altered by climate change. Lengthened cycles may be explained by prolonged survival of some animal hosts, and consequently greater inertia in herd immunity changes, slowing down a feedback loop between the herd immunity and amount of virus circulating in nature.

Suggested Citation

  • Petr Zeman, 2019. "Prolongation of Tick-Borne Encephalitis Cycles in Warmer Climatic Conditions," IJERPH, MDPI, vol. 16(22), pages 1-10, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4532-:d:287575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/22/4532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/22/4532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernard Cazelles & Mario Chavez & Anthony J McMichael & Simon Hales, 2005. "Nonstationary Influence of El Niño on the Synchronous Dengue Epidemics in Thailand," PLOS Medicine, Public Library of Science, vol. 2(4), pages 1-1, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chrysa Voyiatzaki & Sevastiani I. Papailia & Maria S. Venetikou & John Pouris & Maria E. Tsoumani & Effie G. Papageorgiou, 2022. "Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe—How Climate Models Are Used as a Risk Assessment Approach for Tick-," IJERPH, MDPI, vol. 19(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Yan Xu & Xiuju Fu & Lionel Kim Hock Lee & Stefan Ma & Kee Tai Goh & Jiancheng Wong & Mohamed Salahuddin Habibullah & Gary Kee Khoon Lee & Tian Kuay Lim & Paul Anantharajah Tambyah & Chin Leong Lim, 2014. "Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(5), pages 1-11, May.
    2. Yoon Ling Cheong & Katrin Burkart & Pedro J. Leitão & Tobia Lakes, 2013. "Assessing Weather Effects on Dengue Disease in Malaysia," IJERPH, MDPI, vol. 10(12), pages 1-16, November.
    3. Dharmaratne Amarakoon & Anthony Chen & Sam Rawlins & Dave Chadee & Michael Taylor & Roxann Stennett, 2008. "Dengue epidemics in the Caribbean-temperature indices to gauge the potential for onset of dengue," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(4), pages 341-357, May.
    4. Xavier Rodó & Mercedes Pascual & Francisco Doblas-Reyes & Alexander Gershunov & Dáithí Stone & Filippo Giorgi & Peter Hudson & James Kinter & Miquel-Àngel Rodríguez-Arias & Nils Stenseth & David Alons, 2013. "Climate change and infectious diseases: Can we meet the needs for better prediction?," Climatic Change, Springer, vol. 118(3), pages 625-640, June.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Taynãna C Simões & Cláudia T Codeço & Aline A Nobre & Álvaro E Eiras, 2013. "Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    7. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    8. Julián Alfredo Fernández-Niño & Claudia Iveth Astudillo-García & Ietza Bojorquez-Chapela & Evangelina Morales-Carmona & Airain Alejandra Montoya-Rodriguez & Lina Sofia Palacio-Mejia, 2016. "The Mexican Cycle of Suicide: A National Analysis of Seasonality, 2000-2013," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Jeon-Young Kang & Jared Aldstadt, 2017. "The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model," IJERPH, MDPI, vol. 14(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4532-:d:287575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.