IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i5p217-d1654955.html
   My bibliography  Save this article

A Web-Based Application for Smart City Data Analysis and Visualization

Author

Listed:
  • Panagiotis Karampakakis

    (Department of Information and Electronic Engineering, International Hellenic University, 574 00 Thessaloniki, Greece)

  • Despoina Ioakeimidou

    (Department of Production and Management Engineering, Democritus University of Thrace, 671 32 Xanthi, Greece)

  • Periklis Chatzimisios

    (Department of Information and Electronic Engineering, International Hellenic University, 574 00 Thessaloniki, Greece
    Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001, USA)

  • Konstantinos A. Tsintotas

    (Department of Information and Electronic Engineering, International Hellenic University, 574 00 Thessaloniki, Greece)

Abstract

Smart cities are urban areas that use contemporary technology to improve citizens’ overall quality of life. These modern digital civil hubs aim to manage environmental conditions, traffic flow, and infrastructure through interconnected and data-driven decision-making systems. Today, many applications employ intelligent sensors for real-time data acquisition, leveraging visualization to derive actionable insights. However, despite the proliferation of such platforms, challenges like high data volume, noise, and incompleteness continue to hinder practical visual analysis. As missing data is a frequent issue in visualizing those urban sensing systems, our approach prioritizes their correction as a fundamental step. We deploy a hybrid imputation strategy combining SARIMAX, k -nearest neighbors, and random forest regression to address this. Building on this foundation, we propose an interactive web-based pipeline that processes, analyzes, and presents the sensor data provided by Basel’s “ Smarte Strasse ”. Our platform receives and projects environmental measurements, i.e., NO 2 , O 3 , PM 2.5 , and traffic noise, as well as mobility indicators such as vehicle speed and type, parking occupancy, and electric vehicle charging behavior. By resolving gaps in the data, we provide a solid foundation for high-fidelity and quality visual analytics. Built on the Flask web framework, the platform incorporates performance optimizations through Flask-Caching. Concerning the user’s dashboard, it supports interactive exploration via dynamic charts and spatial maps. This way, we demonstrate how future internet technologies permit the accessibility of complex urban sensor data for research, planning, and public engagement. Lastly, our open-source web-based application keeps reproducible, privacy-aware urban analytics.

Suggested Citation

  • Panagiotis Karampakakis & Despoina Ioakeimidou & Periklis Chatzimisios & Konstantinos A. Tsintotas, 2025. "A Web-Based Application for Smart City Data Analysis and Visualization," Future Internet, MDPI, vol. 17(5), pages 1-22, May.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:5:p:217-:d:1654955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/5/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/5/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Ho Jo & ByungWan Jo & Jung Hoon Kim & Ian Choi, 2020. "Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM 10 ) in Subway Tunnels," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    2. Heiets, Iryna & La, Jiezhuoma & Zhou, Wenhui & Xu, Shaoxin & Wang, Xingyue & Xu, Yuchen, 2022. "Digital transformation of airline industry," Research in Transportation Economics, Elsevier, vol. 92(C).
    3. Benjamin Agbo & Hussain Al-Aqrabi & Richard Hill & Tariq Alsboui, 2022. "Missing Data Imputation in the Internet of Things Sensor Networks," Future Internet, MDPI, vol. 14(5), pages 1-16, May.
    4. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roblek Vasja & Meško Maja & Podbregar Iztok, 2021. "Mapping of the Emergence of Society 5.0: A Bibliometric Analysis," Organizacija, Sciendo, vol. 54(4), pages 293-305, December.
    2. Becker, Jörg & Distel, Bettina & Grundmann, Matthias & Hupperich, Thomas & Kersting, Norbert & Löschel, Andreas & Parreira do Amaral, Marcelo & Scholta, Hendrik, 2021. "Challenges and potentials of digitalisation for small and mid-sized towns: Proposition of a transdisciplinary research agenda," ERCIS Working Papers 36, University of Münster, European Research Center for Information Systems (ERCIS).
    3. Mariusz J. Ligarski & Tomasz Owczarek, 2024. "Preparing Quality of Life Surveys Versus Using Information for Sustainable Development: The Example of Polish Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 173(3), pages 765-782, July.
    4. Yamilé Pérez Guilarte & Daniel Barreiro Quintáns, 2019. "Using Big Data to Measure Tourist Sustainability: Myth or Reality?," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    5. Ting Mei & Hui Liu & Bingrui Tong & Chaozhen Tong & Junjie Zhu & Yuxuan Wang & Mengyao Kou, 2025. "Exploring Knowledge Domain of Intelligent Safety and Security Studies by Bibliometric Analysis," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    6. Muhammad Atiq Ur Rehman Tariq & Alavaiola Faumatu & Maha Hussein & Muhammad Laiq Ur Rahman Shahid & Nitin Muttil, 2020. "Smart City-Ranking of Major Australian Cities to Achieve a Smarter Future," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    7. Yi-Ming Guo & Zhen-Ling Huang & Ji Guo & Hua Li & Xing-Rong Guo & Mpeoane Judith Nkeli, 2019. "Bibliometric Analysis on Smart Cities Research," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    8. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    9. Paulina Jaczewska & Hubert Sybilski & Marlena Tywonek, 2025. "Assessment of the Solar Potential of Buildings Based on Photogrammetric Data," Energies, MDPI, vol. 18(4), pages 1-35, February.
    10. Kisała Magdalena, 2021. "The Polish Experience in the Development of Smart Cities," TalTech Journal of European Studies, Sciendo, vol. 11(2), pages 48-64, September.
    11. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    12. Eleftheria KOLOKYTHA & Georgios KOLOKYTHAS & Stavros VALSAMIDIS & Giannoula FLOROU, 2015. "The Contribution Of The Open Data To The Development Of The Smart Cities," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 14(2), pages 3-16.
    13. Pasquale Del Vecchio & Gioconda Mele & Valentina Ndou & Giustina Secundo, 2018. "Open Innovation and Social Big Data for Sustainability: Evidence from the Tourism Industry," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    14. Ali M. Alqahtany, 2025. "Smart Cities as a Pathway to Sustainable Urbanism in the Arab World: A Case Analysis of Saudi Cities," Sustainability, MDPI, vol. 17(4), pages 1-16, February.
    15. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    16. Erik Karger & Marvin Jagals & Frederik Ahlemann, 2021. "Blockchain for Smart Mobility—Literature Review and Future Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    17. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    18. Kristian Hoelscher, 2016. "The evolution of the smart cities agenda in India," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 19(1), pages 28-44, March.
    19. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    20. Witold Chmielarz & Marek Zborowski & Alicja Fandrejewska & Mesut Atasever, 2021. "The Contribution of Socio-Cultural Aspects of Smartphone Applications to Smart City Creation. Poland–Turkey Comparison," Energies, MDPI, vol. 14(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:5:p:217-:d:1654955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.