IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i5p122-d797133.html
   My bibliography  Save this article

An ICN-Based IPFS High-Availability Architecture

Author

Listed:
  • Ruibin Zeng

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Jiali You

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Yang Li

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Rui Han

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

Abstract

The Interplanetary File System (IPFS), a new type of P2P file system, enables people to obtain data from other peer nodes in a distributed system without the need to establish a connection with a distant server. However, IPFS suffers from low resolution efficiency and duplicate data delivery, resulting in poor system availability. The new Information-Centric Networking (ICN), on the other hand, applies the features of name resolution service and caching to achieve fast location and delivery of content. Therefore, there is a potential to optimize the availability of IPFS systems from the network layer. In this paper, we propose an ICN-based IPFS high-availability architecture, called IBIHA, which introduces enhanced nodes and information tables to manage data delivery based on the original IPFS network, and uses the algorithm of selecting high-impact nodes from the entitled network (PwRank) as the basis for deploying enhanced nodes in the network, thus achieving the effect of optimizing IPFS availability. The experimental results show that this architecture outperforms the IPFS network in terms of improving node resolution efficiency, reducing network redundant packets, and improving the rational utilization of network link resources.

Suggested Citation

  • Ruibin Zeng & Jiali You & Yang Li & Rui Han, 2022. "An ICN-Based IPFS High-Availability Architecture," Future Internet, MDPI, vol. 14(5), pages 1-24, April.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:5:p:122-:d:797133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/5/122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/5/122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    2. Nan Zhao & Jingjing Bao & Nan Chen, 2020. "Ranking Influential Nodes in Complex Networks with Information Entropy Method," Complexity, Hindawi, vol. 2020, pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    2. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Dongling Yu & Zuguo Yu, 2022. "HWVoteRank: A Network-Based Voting Approach for Identifying Coding and Non-Coding Cancer Drivers," Mathematics, MDPI, vol. 10(5), pages 1-13, March.
    4. Kumar, Sanjay & Panda, B.S., 2020. "Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    More about this item

    Keywords

    IPFS; ICN; availability;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:5:p:122-:d:797133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.