IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i4p57-d1770104.html
   My bibliography  Save this article

Comparison of Linear and Beta Autoregressive Models in Forecasting Nonstationary Percentage Time Series

Author

Listed:
  • Carlo Grillenzoni

    (IUAV: Institute of Architecture, University of Venice, St Croce, n. 1957, 30135 Venezia, Italy)

Abstract

Positive percentage time series are present in many empirical applications; they take values in the continuous interval (0,1) and are often modeled with linear dynamic models. Risks of biased predictions (outside the admissible range) and problems of heteroskedasticity in the presence of asymmetric distributions are ignored by practitioners. Alternative models are proposed in the statistical literature; the most suitable is the dynamic beta regression which belongs to generalized linear models (GLM) and uses the logit transformation as a link function. However, owing to the Jensen inequality, this approach may also not be optimal in prediction; thus, the aim of the present paper is the in-depth forecasting comparison of linear and beta autoregressions. Simulation experiments and applications to nonstationary time series (the US unemployment rate and BR hydroelectric energy) are carried out. Rolling regression for time-varying parameters is applied to both linear and beta models, and a prediction criterion for the joint selection of model order and sample size is defined.

Suggested Citation

  • Carlo Grillenzoni, 2025. "Comparison of Linear and Beta Autoregressive Models in Forecasting Nonstationary Percentage Time Series," Forecasting, MDPI, vol. 7(4), pages 1-17, October.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:57-:d:1770104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/4/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/4/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
    2. King, Gary & Roberts, Margaret E., 2015. "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It," Political Analysis, Cambridge University Press, vol. 23(2), pages 159-179, April.
    3. Grillenzoni, Carlo, 1998. "Forecasting unstable and nonstationary time series," International Journal of Forecasting, Elsevier, vol. 14(4), pages 469-482, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin C. Williams & Ioana Alexandra Horodnic, 2017. "Tackling Bogus Self-Employment: Some Lessons From Romania," Journal of Developmental Entrepreneurship (JDE), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-20, June.
    2. Guilherme Pumi & Taiane Schaedler Prass & Cleiton Guollo Taufemback, 2024. "Unit-Weibull autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 204-229, March.
    3. Daarstad, Haley & Park, RyuGyung & Balogh, Timea, 2023. "A comment on Herzog, Baron, and Gibbons (2022)," I4R Discussion Paper Series 97, The Institute for Replication (I4R).
    4. Nyborg, Kjell & Fecht, Falko & Rocholl, Jörg & Woschitz, Jiri, 2016. "Collateral, Central Bank Repos, and Systemic Arbitrage," CEPR Discussion Papers 11663, C.E.P.R. Discussion Papers.
    5. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    6. Nicole Janz & Noel Johnston & Paasha Mahdavi, 2022. "Expropriation and human rights: does the seizure of FDI signal wider repression?," The Review of International Organizations, Springer, vol. 17(4), pages 847-875, October.
    7. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    9. Henry Mugisha & Job Omagwa & James Kilika, 2021. "Capital structure, market conditions and financial performance of small and medium enterprises in Buganda Region, Uganda," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 10(3), pages 276-288, April.
    10. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    11. Francisco JA Cysneiros, 2018. "Symmetric Regression Model for Temporal Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(2), pages 44-45, February.
    12. Andréa Rocha & Alexandre Simas, 2011. "Influence diagnostics in a general class of beta regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 95-119, May.
    13. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    14. Ronald Nhleko & Daniel Schutte, 2024. "A Panel Analysis of the Impact of EBITDA, Equity Book Values, Growth, Risk and Negative Earnings on Share Price Variations," SAGE Open, , vol. 14(3), pages 21582440241, August.
    15. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
    16. Alan Dasilva & Helton Saulo & Roberto Vila & Jose A. Fiorucci & Suvra Pal, 2024. "Parametric quantile autoregressive moving average models with exogenous terms," Statistical Papers, Springer, vol. 65(3), pages 1613-1643, May.
    17. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    18. Andrew Bell & Malcolm Fairbrother & Kelvyn Jones, 2019. "Fixed and random effects models: making an informed choice," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 1051-1074, March.
    19. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    20. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:57-:d:1770104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.