IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p419-d71101.html
   My bibliography  Save this article

Mitigation Emission Strategy Based on Resonances from a Power Inverter System in Electric Vehicles

Author

Listed:
  • Li Zhai

    (National Engineering Laboratory for Electric Vehicle, Beijing Institute of Technology, Beijing 100081, China
    Co-Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

  • Xinyu Zhang

    (National Engineering Laboratory for Electric Vehicle, Beijing Institute of Technology, Beijing 100081, China
    Co-Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China)

  • Natalia Bondarenko

    (Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • David Loken

    (John Deere Electronic Solutions, Fargo, ND 58102, USA)

  • Thomas P. Van Doren

    (Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology, Rolla, MO 65409, USA
    These authors contributed equally to this work.)

  • Daryl G. Beetner

    (Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology, Rolla, MO 65409, USA
    These authors contributed equally to this work.)

Abstract

Large d v /d t and d i /d t outputs of power devices in the DC-fed motor power inverter can generate conducted and/or radiated emissions through parasitics that interfere with low voltage electric systems in electric vehicles (EVs) and nearby vehicles. The electromagnetic interference (EMI) filters, ferrite chokes, and shielding added in the product process based on the “black box” approach can reduce the emission levels in a specific frequency range. However, these countermeasures may also introduce an unexpected increase in EMI noises in other frequency ranges due to added capacitances and inductances in filters resonating with elements of the power inverter, and even increase the weight and dimension of the power inverter system in EVs with limited space. In order to predict the interaction between the mitigation techniques and power inverter geometry, an accurate model of the system is needed. A power inverter system was modeled based on series of two-port network measurements to study the impact of EMI generated by power devices on radiated emission of AC cables. Parallel resonances within the circuit can cause peaks in the S21 (transmission coefficient between the phase-node-to-chassis voltage and the center-conductor-to-shield voltage of the AC cable connecting to the motor) and Z11 (input impedance at Port 1 between the Insulated gate bipolar transistor (IGBT) phase node and chassis) at those resonance frequencies and result in enlarged noise voltage peaks at Port 1. The magnitude of S21 between two ports was reduced to decrease the amount of energy coupled from the noise source between the phase node and chassis to the end of the AC cable by lowering the corresponding quality factor. The equivalent circuits were built by analyzing current-following paths at three critical resonance frequencies. Interference voltage peaks can be suppressed by mitigating the resonances. The capacitances and inductances generating the parallel resonances and responsible elements were determined by the calculation through the equivalent circuits. A combination of mitigation strategies including adding common-mode (CM) ferrite chokes through the Y-caps and the AC bus bar was designed to mitigate the resonances at 6 MHz, 11 MHz, and 26 MHz related to the CM conducted emission by IGBT switching and the radiated emission of the AC cable. The values of Z11 decreased respectively by 15 dB at 6 MHz, 0.4 dB at 11 MHz, and 11.5 dB at 26 MHz and the values of S21 decreased respectively by 8.6 dB at 6 MHz, 7 dB at 11 MHz, and 6.3 dB at 26 MHz. An equivalent model of the power inverter system for real-time simulation in time domain was built to validate the mitigation strategy in simulation software PSPICE.

Suggested Citation

  • Li Zhai & Xinyu Zhang & Natalia Bondarenko & David Loken & Thomas P. Van Doren & Daryl G. Beetner, 2016. "Mitigation Emission Strategy Based on Resonances from a Power Inverter System in Electric Vehicles," Energies, MDPI, vol. 9(6), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:419-:d:71101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/419/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhai & Liwen Lin & Xinyu Zhang & Chao Song, 2016. "The Effect of Distributed Parameters on Conducted EMI from DC-Fed Motor Drive Systems in Electric Vehicles," Energies, MDPI, vol. 10(1), pages 1-17, December.
    2. Matallana, A. & Ibarra, E. & López, I. & Andreu, J. & Garate, J.I. & Jordà, X. & Rebollo, J., 2019. "Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    4. Li Zhai & Tao Zhang & Yu Cao & Sipeng Yang & Steven Kavuma & Huiyuan Feng, 2018. "Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle," Energies, MDPI, vol. 11(5), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:419-:d:71101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.