IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i1p47-d62226.html
   My bibliography  Save this article

Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

Author

Listed:
  • Lulu Wang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Hang Guo

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

  • Fang Ye

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

  • Chongfang Ma

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs) under the condition of switching from the fuel cell (FC) mode to the water electrolysis (WE) mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM) is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen) and product (water) exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water) and products (oxygen and hydrogen) exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

Suggested Citation

  • Lulu Wang & Hang Guo & Fang Ye & Chongfang Ma, 2016. "Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching," Energies, MDPI, vol. 9(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:47-:d:62226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/47/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xian Ming & Guo, Hang & Liu, Jia Xing & Ye, Fang & Ma, Chong Fang, 2018. "Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell," Energy, Elsevier, vol. 162(C), pages 1041-1051.
    2. Hong Xiao & Hang Guo & Fang Ye & Chongfang Ma, 2016. "Numerical Study of the Dynamic Response of Heat and Mass Transfer to Operation Mode Switching of a Unitized Regenerative Fuel Cell," Energies, MDPI, vol. 9(12), pages 1-19, December.
    3. Guo, Hang & Song, Jia & Ye, Fang & Chong Fang, M.A., 2022. "Dynamic response during mode switching of unitized regenerative fuel cells with orientational flow channels," Renewable Energy, Elsevier, vol. 188(C), pages 698-710.
    4. Liu, Jia Xing & Guo, Hang & Ye, Fang & Ma, Chong Fang, 2017. "Two-dimensional analytical model of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 119(C), pages 299-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:47-:d:62226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.