IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p884-899d23545.html
   My bibliography  Save this article

High Level Ethanol Production by Nitrogen and Osmoprotectant Supplementation under Very High Gravity Fermentation Conditions

Author

Listed:
  • Pachaya Chan-u-tit

    (Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Lakkana Laopaiboon

    (Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
    Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Prasit Jaisil

    (Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Pattana Laopaiboon

    (Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
    Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

Optimization of nutrient supplements i.e. , yeast extract (1, 3 and 5 g·L −1 ), dried spent yeast (DSY: 4, 12 and 20 g·L −1 ) and osmoprotectant (glycine: 1, 3 and 5 g·L −1 ) to improve the efficiency of ethanol production from a synthetic medium under very high gravity (VHG) fermentation by Saccharomyces cerevisiae NP 01 was performed using a statistical method, an L 9 (3 4 ) orthogonal array design. The synthetic medium contained 280 g·L −1 of sucrose as a sole carbon source. When the fermentation was carried out at 30 °C, the ethanol concentration ( P ), yield ( Y p/s ) and productivity ( Q p ) without supplementation were 95.3 g·L −1 , 0.49 g·g −1 and 1.70 g·L −1 ·h −1 , respectively. According to the orthogonal results, the order of influence on the P and Q p values were yeast extract > glycine > DSY, and the optimum nutrient concentrations were yeast extract, 3; DSY, 4 and glycine, 5 g·L −1 , respectively. The verification experiment using these parameters found that the P , Y p/s and Q p values were 119.9 g·L −1 , 0.49 g g −1 and 2.14 g·L −1 ·h −1 , respectively. These values were not different from those of the synthetic medium supplemented with 9 g·L −1 of yeast extract, indicating that DSY could be used to replace some amount of yeast extract. When sweet sorghum juice cv. KKU40 containing 280 g·L −1 of total sugar supplemented with the three nutrients at the optimum concentrations was used as the ethanol production medium, the P value (120.0 g·L −1 ) was not changed, but the Q p value was increased to 2.50 g·L −1 ·h −1 .

Suggested Citation

  • Pachaya Chan-u-tit & Lakkana Laopaiboon & Prasit Jaisil & Pattana Laopaiboon, 2013. "High Level Ethanol Production by Nitrogen and Osmoprotectant Supplementation under Very High Gravity Fermentation Conditions," Energies, MDPI, vol. 6(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:884-899:d:23545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orawan Deesuth & Pattana Laopaiboon & Prasit Jaisil & Lakkana Laopaiboon, 2012. "Optimization of Nitrogen and Metal Ions Supplementation for Very High Gravity Bioethanol Fermentation from Sweet Sorghum Juice Using an Orthogonal Array Design," Energies, MDPI, vol. 5(9), pages 1-20, August.
    2. Naulchan Khongsay & Lakkana Laopaiboon & Prasit Jaisil & Pattana Laopaiboon, 2012. "Optimization of Agitation and Aeration for Very High Gravity Ethanol Fermentation from Sweet Sorghum Juice by Saccharomyces cerevisiae Using an Orthogonal Array Design," Energies, MDPI, vol. 5(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puligundla, Pradeep & Smogrovicova, Daniela & Mok, Chulkyoon & Obulam, Vijaya Sarathi Reddy, 2019. "A review of recent advances in high gravity ethanol fermentation," Renewable Energy, Elsevier, vol. 133(C), pages 1366-1379.
    2. Sunan Nuanpeng & Sudarat Thanonkeo & Mamoru Yamada & Pornthap Thanonkeo, 2016. "Ethanol Production from Sweet Sorghum Juice at High Temperatures Using a Newly Isolated Thermotolerant Yeast Saccharomyces cerevisiae DBKKU Y-53," Energies, MDPI, vol. 9(4), pages 1-20, March.
    3. Lakkana Laopaiboon & Suntaree Suporn & Preekamol Klanrit & Niphaphat Phukoetphim & Chalida Daengbussadee & Pattana Laopaiboon, 2021. "Novel Effective Yeast Strains and Their Performance in High Gravity and Very High Gravity Ethanol Fermentations from Sweet Sorghum Juice," Energies, MDPI, vol. 14(3), pages 1-15, January.
    4. Niphaphat Phukoetphim & Pachaya Chan-u-tit & Pattana Laopaiboon & Lakkana Laopaiboon, 2019. "Improvement of Bioethanol Production from Sweet Sorghum Juice under Very High Gravity Fermentation: Effect of Nitrogen, Osmoprotectant, and Aeration," Energies, MDPI, vol. 12(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sureerat Suwanapong & Naulchan Khongsay & Lakkana Laopaiboon & Prasit Jaisil & Pattana Laopaiboon, 2013. "Dried Spent Yeast and Its Hydrolysate as Nitrogen Supplements for Single Batch and Repeated-Batch Ethanol Fermentation from Sweet Sorghum Juice," Energies, MDPI, vol. 6(3), pages 1-14, March.
    2. Gabriela N. Tenea & Fabricio Veintimilla, 2021. "Potential Use of Native Yeasts to Produce Bioethanol and Other Byproducts from Black Sugarcane, an Alternative to Increment the Subsistence Farming in Northern Ecuador," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    3. Lakkana Laopaiboon & Suntaree Suporn & Preekamol Klanrit & Niphaphat Phukoetphim & Chalida Daengbussadee & Pattana Laopaiboon, 2021. "Novel Effective Yeast Strains and Their Performance in High Gravity and Very High Gravity Ethanol Fermentations from Sweet Sorghum Juice," Energies, MDPI, vol. 14(3), pages 1-15, January.
    4. Niphaphat Phukoetphim & Pachaya Chan-u-tit & Pattana Laopaiboon & Lakkana Laopaiboon, 2019. "Improvement of Bioethanol Production from Sweet Sorghum Juice under Very High Gravity Fermentation: Effect of Nitrogen, Osmoprotectant, and Aeration," Energies, MDPI, vol. 12(19), pages 1-13, September.
    5. Puligundla, Pradeep & Smogrovicova, Daniela & Mok, Chulkyoon & Obulam, Vijaya Sarathi Reddy, 2019. "A review of recent advances in high gravity ethanol fermentation," Renewable Energy, Elsevier, vol. 133(C), pages 1366-1379.
    6. Orawan Deesuth & Pattana Laopaiboon & Prasit Jaisil & Lakkana Laopaiboon, 2012. "Optimization of Nitrogen and Metal Ions Supplementation for Very High Gravity Bioethanol Fermentation from Sweet Sorghum Juice Using an Orthogonal Array Design," Energies, MDPI, vol. 5(9), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:884-899:d:23545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.