IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i4p898-910d17031.html
   My bibliography  Save this article

Direct Observation of THF Hydrate Formation in Porous Microstructure Using Magnetic Resonance Imaging

Author

Listed:
  • Kaihua Xue

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Jiafei Zhao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yongchen Song

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Weiguo Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Weihaur Lam

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
    Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Yiming Zhu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yu Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Chuanxiao Cheng

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Di Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

The porous microstructure of hydrates governs the mechanical strength of the hydrate-bearing sediment. To investigate the growth law and microstructure of hydrates in porous media, the growth process of tetrahydrofuran (THF) hydrate under different concentration of THF solution is directly observed using Magnetic Resonance Imaging (MRI). The images show that the THF hydrate grows as different models under different concentration of THF solution (19%, 11.4% and 5.7% by weight) at 1 °C. When the concentration is 19% (stoichiometric molar ratio of THF/H 2 O = 1:17), the THF hydrate grows as cementing model. However, with the decreasing concentration of THF, the growth model transfers from cementing model to floating model. The results show that the growth of the THF hydrate was influenced by the dissolved quantity of THF in the water. The extension of the observed behavior to methane hydrate could have implications in understanding their role in seafloor and permafrost stability.

Suggested Citation

  • Kaihua Xue & Jiafei Zhao & Yongchen Song & Weiguo Liu & Weihaur Lam & Yiming Zhu & Yu Liu & Chuanxiao Cheng & Di Liu, 2012. "Direct Observation of THF Hydrate Formation in Porous Microstructure Using Magnetic Resonance Imaging," Energies, MDPI, vol. 5(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:898-910:d:17031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/4/898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/4/898/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    2. Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2015. "Experimental study on the effective thermal conductivity of hydrate-bearing sediments," Energy, Elsevier, vol. 79(C), pages 203-211.
    3. Hao Peng & Xiaosen Li & Zhaoyang Chen & Yu Zhang & Changyu You, 2022. "Key Points and Current Studies on Seepage Theories of Marine Natural Gas Hydrate-Bearing Sediments: A Narrative Review," Energies, MDPI, vol. 15(14), pages 1-33, July.
    4. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:898-910:d:17031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.