IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i6p1049-1066d8504.html
   My bibliography  Save this article

Transient Response Improvement of Microgrids Exploiting the Inertia of a Doubly-Fed Induction Generator (DFIG)

Author

Listed:
  • Christina N. Papadimitriou

    (University of Patras, Panepistimioupoli, Patras, Rio GR26500, Greece)

  • Nicholas A. Vovos

    (University of Patras, Panepistimioupoli, Patras, Rio GR26500, Greece)

Abstract

Storage devices are introduced in microgrids in order to secure their power quality, power regularity and offer ancillary services in a transient period. In the transition period of a low voltage microgrid, from the connected mode of operation to the islanded mode of operation, the power unbalance can be partly covered by the inertia energy of the existing power sources. This paper proposes fuzzy local controllers exploiting the inertia of a Wind Turbine (WT) with a Doubly Fed Induction Generator (DFIG), if such a machine exists in the microgrid, in order to decrease the necessary storage devices and the drawbacks that arise. The proposed controllers are based in fuzzy logic due to the non linear and stochastic behavior of the system. Two cases are studied and compared during the transient period where the microgrid architecture and the DFIG controller differ. In the first case, the understudy microgrid includes a hybrid fuel cell system (FCS)-battery system and a WT with a DFIGURE. The DFIG local controller in this case is also based in fuzzy logic and follows the classical optimum power absorption scenario for the WT. The transition of the microgrid from the connected mode of operation to the islanded mode is evaluated and, especially, the battery contribution is estimated. In the second case, the battery is eliminated. The fuzzy controller of the DFIG during the transition provides primary frequency control and local bus voltage support exploiting the WT inertia. The response of the system is estimated in both cases using MATLAB/Simulink software package.

Suggested Citation

  • Christina N. Papadimitriou & Nicholas A. Vovos, 2010. "Transient Response Improvement of Microgrids Exploiting the Inertia of a Doubly-Fed Induction Generator (DFIG)," Energies, MDPI, vol. 3(6), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:6:p:1049-1066:d:8504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/6/1049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/6/1049/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Xiao & Zhe Zhang & Xianggen Yin, 2015. "Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions," Energies, MDPI, vol. 8(10), pages 1-22, September.
    2. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    3. Ying-Yi Hong & Jing-Han Chou, 2012. "Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks," Energies, MDPI, vol. 5(7), pages 1-16, July.
    4. Tai Li & Leqiu Wang & Yanbo Wang & Guohai Liu & Zhiyu Zhu & Yongwei Zhang & Li Zhao & Zhicheng Ji, 2021. "Data-Driven Virtual Inertia Control Method of Doubly Fed Wind Turbine," Energies, MDPI, vol. 14(17), pages 1-18, September.
    5. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    6. Agustín Valverde Granja & Teófilo Miguel De Souza & Pedro Magalhães Sobrinho & Daniel Felipe Arévalo Santos, 2018. "Study of Power Quality at the Point of Common Coupling of a Low Voltage Grid and a Distributed Generation System of 7.8 kWp in a Tropical Region," Energies, MDPI, vol. 11(6), pages 1-19, June.
    7. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.
    8. Minas Patsalides & Christina N. Papadimitriou & Venizelos Efthymiou, 2021. "Low Inertia Systems Frequency Variation Reduction with Fine-Tuned Smart Energy Controllers," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    9. Mingchao Xia & Xiaoliang Li, 2013. "Design and Implementation of a High Quality Power Supply Scheme for Distributed Generation in a Micro-Grid," Energies, MDPI, vol. 6(9), pages 1-21, September.
    10. Wei Gu & Wei Liu & Zhi Wu & Bo Zhao & Wu Chen, 2013. "Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES," Energies, MDPI, vol. 6(8), pages 1-21, August.
    11. Rui Quan & Wenxia Pan, 2017. "A Low-Order System Frequency Response Model for DFIG Distributed Wind Power Generation Systems Based on Small Signal Analysis," Energies, MDPI, vol. 10(5), pages 1-15, May.

    More about this item

    Keywords

    DFIG; fuzzy logic; microgrid;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:6:p:1049-1066:d:8504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.