IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p478-d1573007.html
   My bibliography  Save this article

Enhanced COVID-19 Optimization Algorithm for Solving Multi-Objective Optimal Power Flow Problems with Uncertain Renewable Energy Sources: A Case Study of the Iraqi High-Voltage Grid

Author

Listed:
  • Basim ALBaaj

    (Department of Electrical and Electronics Engineering, Gazi University, 06570 Ankara, Turkey)

  • Orhan Kaplan

    (Department of Electrical and Electronics Engineering, Gazi University, 06570 Ankara, Turkey)

Abstract

The optimal power flow (OPF) problem is a critical component in the design and operation of power transmission systems. Various optimization algorithms have been developed to address this issue. This paper expands the use of the coronavirus disease optimization algorithm (COVIDOA) to solve a multi-objective OPF problem (MO-OPF), incorporating renewable energy sources as distributed generation (DG) across multiple scenarios. The main objective is to minimize fuel costs, emissions, voltage deviations, and power losses. Due to its non-convex nature and computational complexity, OPF poses significant challenges. While COVIDOA has been utilized to solve engineering problems, it faces difficulties with non-linear and non-convex issues. This paper introduces an enhanced version, the enhanced COVID-19 optimization algorithm (ENHCOVIDOA), designed to improve the performance of the original method. The effectiveness of the proposed algorithm is validated through testing on IEEE 30-bus, 57-bus, and 118-bus systems, as well as a real-world 28-bus system representing Iraq’s standard Iraq super grid high voltage (SISGHV 28-bus). The two-point estimation method (TPEM) is also applied to manage uncertainties in renewable energy sources in some cases, leading to cost reductions and annual savings of ($70,909.344, $817,676.64, and $5,608,782.144) for the IEEE 30-bus, 57-bus, and reality 28-bus systems, respectively. Thirteen different cases were analyzed, and the results demonstrate that ENHCOVIDOA is notably more efficient and effective than other optimization algorithms in the literature.

Suggested Citation

  • Basim ALBaaj & Orhan Kaplan, 2025. "Enhanced COVID-19 Optimization Algorithm for Solving Multi-Objective Optimal Power Flow Problems with Uncertain Renewable Energy Sources: A Case Study of the Iraqi High-Voltage Grid," Energies, MDPI, vol. 18(3), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:478-:d:1573007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    3. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Amjad Anvari-Moghaddam & Fausto Pedro García Márquez, 2021. "A Robust Optimization Approach for Optimal Power Flow Solutions Using Rao Algorithms," Energies, MDPI, vol. 14(17), pages 1-28, September.
    4. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    5. Mohamed Ebeed & Ayman Alhejji & Salah Kamel & Francisco Jurado, 2020. "Solving the Optimal Reactive Power Dispatch Using Marine Predators Algorithm Considering the Uncertainties in Load and Wind-Solar Generation Systems," Energies, MDPI, vol. 13(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    2. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    3. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    4. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    5. Lenin Kanagasabai, 2022. "Mathematics based calculation and stemonitis inspired optimization algorithms for loss reduction and power solidity augmentation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2710-2726, October.
    6. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    7. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    8. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    9. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    10. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    11. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    12. Rahmad Syah & Safoura Faghri & Mahyuddin KM Nasution & Afshin Davarpanah & Marek Jaszczur, 2021. "Modeling and Optimization of Wind Turbines in Wind Farms for Solving Multi-Objective Reactive Power Dispatch Using a New Hybrid Scheme," Energies, MDPI, vol. 14(18), pages 1-22, September.
    13. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    14. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    15. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    16. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    17. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    18. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2024. "Multi Criteria Frameworks Using New Meta-Heuristic Optimization Techniques for Solving Multi-Objective Optimal Power Flow Problems," Energies, MDPI, vol. 17(9), pages 1-39, May.
    19. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    20. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:478-:d:1573007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.