IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3569-d1696116.html
   My bibliography  Save this article

Assessment of Building Compactness at Initial Design Stage of Single-Family Houses

Author

Listed:
  • Edwin Koźniewski

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45E, 15-351 Bialystok, Poland)

Abstract

The paper is the culmination of research on geometric aspects of assessing the energy demand of a single-family house. In a recent study, two collections of single-family houses were analyzed: (a) a collection of 21 with outlines assumed a priori so that the building area was constant (which is not achievable in practice) and (b) a collection of 33 real buildings, recently designed by the Polish design studio Galeria Domów. These examples show the functioning of the indicators analyzed by the author in earlier papers and indicate the R C s q indicator that best reflects the assessment of building compactness in percentage points in relation to the ideal shape of the building plan, which is a square. The R C s q index is economically expressed by only two parameters, namely the base area A f and the building outline perimeter P , and therefore is easy to implement in the BIM system and at the same time covers high-rise buildings. As it turned out, the tested buildings from Galeria Domów have very good geometric and therefore energy efficiency. The above-mentioned indicator also highlights the advisability of analyzing the heated part in addition to the standard full-contour analyses.

Suggested Citation

  • Edwin Koźniewski, 2025. "Assessment of Building Compactness at Initial Design Stage of Single-Family Houses," Energies, MDPI, vol. 18(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3569-:d:1696116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwin Koźniewski & Beata Sadowska & Karolina Banaszak, 2022. "Geometric Aspects of Assessing the Anticipated Energy Demand of a Designed Single-Family House," Energies, MDPI, vol. 15(9), pages 1-21, May.
    2. Menglin Dai & Wil O. C. Ward & Hadi Arbabi & Danielle Densley Tingley & Martin Mayfield, 2022. "Scalable Residential Building Geometry Characterisation Using Vehicle-Mounted Camera System," Energies, MDPI, vol. 15(16), pages 1-13, August.
    3. Edwin Koźniewski & Karolina Banaszak, 2020. "Geometric Aspects of Assessing the Amount of Material Consumption in the Construction of a Designed Single-Family House," Energies, MDPI, vol. 13(20), pages 1-19, October.
    4. Gauch, H.L. & Dunant, C.F. & Hawkins, W. & Cabrera Serrenho, A., 2023. "What really matters in multi-storey building design? A simultaneous sensitivity study of embodied carbon, construction cost, and operational energy," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hu & Tian, Wei & Tan, Jingyuan & Yin, Juchao & Fu, Xing, 2024. "Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces," Applied Energy, Elsevier, vol. 363(C).
    2. Jefferson Torres-Quezada & Tatiana Sánchez-Quezada, 2023. "Dataset of Specific Total Embodied Energy and Specific Total Weight of 40 Buildings from the Last Four Decades in the Andean Region of Ecuador," Data, MDPI, vol. 8(5), pages 1-17, April.
    3. Ahmadi, Mohsen & Piadeh, Farzad & Hosseini, M. Reza & Zuo, Jian & Kocaturk, Tuba, 2024. "Unraveling building sector carbon mechanisms: Critique and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    4. Edwin Koźniewski & Beata Sadowska & Karolina Banaszak, 2022. "Geometric Aspects of Assessing the Anticipated Energy Demand of a Designed Single-Family House," Energies, MDPI, vol. 15(9), pages 1-21, May.
    5. Walery Jezierski & Beata Sadowska, 2022. "Optimization of the Selected Parameters of Single-Family House Components with the Estimation of Their Contribution to Energy Saving," Energies, MDPI, vol. 15(23), pages 1-26, November.
    6. Tomasz Schabek & Barbara Król, 2025. "Heat Recovery Ventilation and Thermal Insulation: Economic Decision-Making in Central European Households," Sustainability, MDPI, vol. 17(9), pages 1-17, April.
    7. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3569-:d:1696116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.