IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3078-d1676332.html
   My bibliography  Save this article

Self-Supervised Asynchronous Federated Learning for Diagnosing Partial Discharge in Gas-Insulated Switchgear

Author

Listed:
  • Van Nghia Ha

    (Department of Computer Science and Information, Korea National University of Transportation, 157, Cheoldobangmulgwan-ro, Uiwang-si 16106, Gyeonggi-do, Republic of Korea)

  • Young-Woo Youn

    (Smart Grid Research Division, Korea Electrotechnology Research Institute, Gwangju-si 61751, Gyeonggi-do, Republic of Korea
    Kim Jaecul Graduate School of AI, Korea Advanced Institute of Science and Technology, Daejeon-si 34141, Chungcheongnam-do, Republic of Korea)

  • Hyeon-Soo Choi

    (Genad System, Naju-si 58296, Jeollanam-do, Republic of Korea)

  • Hong Nhung-Nguyen

    (Department of AI and Software Enineering, Gachon Unviersity, Seongnam-si 13120, Gyeonggi-do, Republic of Korea)

  • Yong-Hwa Kim

    (Department of Computer Science and Information, Korea National University of Transportation, 157, Cheoldobangmulgwan-ro, Uiwang-si 16106, Gyeonggi-do, Republic of Korea)

Abstract

Deep learning-based models have achieved considerable success in partial discharge (PD) fault diagnosis for power systems, enhancing grid asset safety and improving reliability. However, traditional approaches often rely on centralized training, which demands significant resources and fails to account for the impact of noisy operating conditions on Intelligent Electronic Devices (IEDs). In a gas-insulated switchgear (GIS), PD measurement data collected in noisy environments exhibit diverse feature distributions and a wide range of class representations, posing significant challenges for trained models under complex conditions. To address these challenges, we propose a Self-Supervised Asynchronous Federated Learning (SSAFL) approach for PD diagnosis in noisy IED environments. The proposed technique integrates asynchronous federated learning with self-supervised learning, enabling IEDs to learn robust pattern representations while preserving local data privacy and mitigating the effects of resource heterogeneity among IEDs. Experimental results demonstrate that the proposed SSAFL framework achieves overall accuracies of 98% and 95% on the training and testing datasets, respectively. Additionally, for the floating class in IED 1, SSAFL improves the F1-score by 5% compared to Self-Supervised Federated Learning (SSFL). These results indicate that the proposed SSAFL method offers greater adaptability to real-world scenarios. In particular, it effectively addresses the scarcity of labeled data, ensures data privacy, and efficiently utilizes heterogeneous local resources.

Suggested Citation

  • Van Nghia Ha & Young-Woo Youn & Hyeon-Soo Choi & Hong Nhung-Nguyen & Yong-Hwa Kim, 2025. "Self-Supervised Asynchronous Federated Learning for Diagnosing Partial Discharge in Gas-Insulated Switchgear," Energies, MDPI, vol. 18(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3078-:d:1676332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Zhang & Yang Yu & Yingying Zhang & Zehuan Liu & Mingjia Zhang, 2024. "A Semi-Supervised Approach for Partial Discharge Recognition Combining Graph Convolutional Network and Virtual Adversarial Training," Energies, MDPI, vol. 17(18), pages 1-15, September.
    2. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Shuai Hou & Jizhe Lu & Enguo Zhu & Hailong Zhang & Aliaosha Ye & Zhihan Lv, 2022. "A Federated Learning-Based Fault Detection Algorithm for Power Terminals," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seokho Moon & Hansam Cho & Eunji Koh & Yong Sung Cho & Hyoung Lok Oh & Younghoon Kim & Seoung Bum Kim, 2022. "Remanufacturing Decision-Making for Gas Insulated Switchgear with Remaining Useful Life Prediction," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    2. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    3. Yang Ge & Yong Ren, 2024. "Federated Transfer Fault Diagnosis Method Based on Variational Auto-Encoding with Few-Shot Learning," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
    4. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    5. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    6. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    7. Xiu Zhou & Xutao Wu & Pei Ding & Xiuguang Li & Ninghui He & Guozhi Zhang & Xiaoxing Zhang, 2019. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm," Energies, MDPI, vol. 13(1), pages 1-13, December.
    8. Yanxin Wang & Jing Yan & Zhou Yang & Tingliang Liu & Yiming Zhao & Junyi Li, 2019. "Partial Discharge Pattern Recognition of Gas-Insulated Switchgear via a Light-Scale Convolutional Neural Network," Energies, MDPI, vol. 12(24), pages 1-19, December.
    9. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    10. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    11. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    12. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    13. Daria Wotzka & Wojciech Sikorski & Cyprian Szymczak, 2022. "Investigating the Capability of PD-Type Recognition Based on UHF Signals Recorded with Different Antennas Using Supervised Machine Learning," Energies, MDPI, vol. 15(9), pages 1-20, April.
    14. Wang, Bo & Jia, Xiaoyu & Yang, Jian & Wang, Qiuwang, 2022. "Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber," Energy, Elsevier, vol. 254(PC).
    15. Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
    16. Chin-Tan Lee & Shih-Cheng Horng, 2020. "Abnormality Detection of Cast-Resin Transformers Using the Fuzzy Logic Clustering Decision Tree," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3078-:d:1676332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.