IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2677-d1661748.html
   My bibliography  Save this article

A Load Restoration Approach Based on Symmetrical Demand Response Incentive Mechanism

Author

Listed:
  • Xuntao Shi

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

  • Jian Sun

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Xiaobing Xiao

    (CSG Electric Power Research Institute, Guangzhou 510663, China)

  • Yongjun Zhang

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

  • Yiyong Lei

    (China Southern Power Grid, Guangzhou 510530, China)

  • Hao Yang

    (China Southern Power Grid, Guangzhou 510530, China)

  • Zhuangzhuang Li

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510641, China)

Abstract

Demand response (DR) has high regulation potential, which can reduce the power supply–demand imbalance caused by extreme disasters. However, its actual effectiveness still needs to be improved because of low user willingness and incomplete compensation mechanisms. To address this issue, a symmetrical incentive mechanism for DR is proposed. Building upon this mechanism, a bi-level load restoration optimization model under extreme events is proposed. The upper-level model minimizes grid-side costs during load restoration, determining load restoration ratios and incentive coefficients transmitted to the lower level. The lower-level model maximizes user profits while considering comfort-level losses from DR participation, solving for actual response quantities that are fed back to the upper level. To efficiently solve the proposed load restoration model, an iterative mixed-integer load restoration solver is proposed. Case studies demonstrate that the proposed symmetrical mechanism achieved an 89.6% participation rate, showing a 2.46% improvement over fixed incentive schemes. Grid payment costs were reduced by CNY 365,400, achieving incentive compatibility that facilitates rapid load restoration post extreme disasters.

Suggested Citation

  • Xuntao Shi & Jian Sun & Xiaobing Xiao & Yongjun Zhang & Yiyong Lei & Hao Yang & Zhuangzhuang Li, 2025. "A Load Restoration Approach Based on Symmetrical Demand Response Incentive Mechanism," Energies, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2677-:d:1661748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    2. Hao Dai & Dafu Liu & Guowei Liu & Hao Deng & Lisheng Xin & Longlong Shang & Ziyu Liu & Ziwen Xu & Jiaju Shi & Chen Chen, 2025. "A Method for Restoring Power Supply to Distribution Networks Considering the Coordination of Multiple Resources Under Typhoon-Induced Waterlogging Disasters," Energies, MDPI, vol. 18(5), pages 1-17, March.
    3. Hao Dai & Ziyu Liu & Guowei Liu & Hao Deng & Lisheng Xin & Liang He & Longlong Shang & Dafu Liu & Jiaju Shi & Ziwen Xu & Chen Chen, 2025. "Collaborative Scheduling Framework for Post-Disaster Restoration: Integrating Electric Vehicles and Traffic Dynamics in Waterlogging Scenarios," Energies, MDPI, vol. 18(7), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    3. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    4. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    5. Jinling Lu & Bo Wang & Hui Ren & Daqian Zhao & Fei Wang & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
    6. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    7. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    8. Ayman Esmat & Julio Usaola & Mª Ángeles Moreno, 2018. "A Decentralized Local Flexibility Market Considering the Uncertainty of Demand," Energies, MDPI, vol. 11(8), pages 1-32, August.
    9. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    10. Venkat Durvasulu & Timothy M. Hansen, 2018. "Benefits of a Demand Response Exchange Participating in Existing Bulk-Power Markets," Energies, MDPI, vol. 11(12), pages 1-21, December.
    11. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Cheng, Lin & Wan, Yuxiang & Tian, Liting & Zhang, Fang, 2019. "Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    14. Qiu, Rui & Liao, Qi & Yan, Jie & Yan, Yamin & Guo, Zhichao & Liang, Yongtu & Zhang, Haoran, 2021. "The coupling impact of subsystem interconnection and demand response on the distributed energy systems: A case study of the composite community in China," Energy, Elsevier, vol. 228(C).
    15. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    16. Andrew Speake & Paul Donohoo-Vallett & Eric Wilson & Emily Chen & Craig Christensen, 2020. "Residential Natural Gas Demand Response Potential during Extreme Cold Events in Electricity-Gas Coupled Energy Systems," Energies, MDPI, vol. 13(19), pages 1-19, October.
    17. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    18. Rocchetta, Roberto & Zio, Enrico & Patelli, Edoardo, 2018. "A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency," Applied Energy, Elsevier, vol. 210(C), pages 339-350.
    19. Kuang, Biao & Shi, Yangming & Hu, Yuqing & Zeng, Zhaoyun & Chen, Jianli, 2024. "Household energy resilience in extreme weather events: An investigation of energy service importance, HVAC usage behaviors, and willingness to pay," Applied Energy, Elsevier, vol. 363(C).
    20. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2677-:d:1661748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.