IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1865-d1375175.html
   My bibliography  Save this article

Air Purification Performance Analysis of Magnetic Fluid Filter with AC Non-Thermal Plasma Discharge

Author

Listed:
  • Takuya Kuwahara

    (Department of Mechanical Engineering, Nippon Institute of Technology, Saitama 3458501, Japan
    Department of Mechanical and Systems Engineering, Graduate School of Nippon Institute of Technology, Saitama 3458501, Japan)

  • Yusuke Asaka

    (Department of Mechanical and Systems Engineering, Graduate School of Nippon Institute of Technology, Saitama 3458501, Japan)

Abstract

Air pollution caused by particulate matter (PM) is a worldwide concern. PM is particularly problematic from fossil-fuel-based energy conversion devices. For PM collection, a low-pressure loss method is ideal. Although PM collection via electrostatic force is an effective method with low pressure loss for PM with a wide range of diameters, it is difficult to apply to low-resistive PM, such as diesel particulates, owing to re-entrainment on the collection electrode. A magnetic fluid filter with an AC non-thermal plasma discharge solves the problem of re-entrainment. Based on our previous study, we hypothesized that an increase in the number of magnetic fluid spikes leads to an improvement in collection efficiencies with energy conservation. In this study, experiments are performed to verify this hypothesis. By improving our previous experimental methodology, the experiments include not only collection efficiency but also pressure loss, power consumption, and ozone generation efficiency. PM collection efficiencies using diesel fine particles and the ozone generation efficiencies required for air purification are investigated under different discharge conditions. The results revealed that the PM collection and ozone generation efficiencies increase proportionally with the number of spikes of the magnetic fluid with discharge, as hypothesized. The resulting PM collection and ozone generation efficiencies are sufficiently high for air purification.

Suggested Citation

  • Takuya Kuwahara & Yusuke Asaka, 2024. "Air Purification Performance Analysis of Magnetic Fluid Filter with AC Non-Thermal Plasma Discharge," Energies, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1865-:d:1375175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuwahara, T. & Nishii, S. & Kuroki, T. & Okubo, M., 2013. "Complete regeneration characteristics of diesel particulate filter using ozone injection," Applied Energy, Elsevier, vol. 111(C), pages 652-656.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanting Du & Guangdi Hu & Shun Xiang & Ke Zhang & Hongxing Liu & Feng Guo, 2018. "Estimation of the Diesel Particulate Filter Soot Load Based on an Equivalent Circuit Model," Energies, MDPI, vol. 11(2), pages 1-13, February.
    2. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    3. Bermúdez, V. & Serrano, J.R. & Piqueras, P. & García-Afonso, O., 2015. "Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters," Applied Energy, Elsevier, vol. 140(C), pages 234-245.
    4. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1865-:d:1375175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.