IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3495-d1436363.html
   My bibliography  Save this article

State-of-Charge Estimation for Lithium-Ion Battery Base on Adaptive Extended Sliding Innovation Filter

Author

Listed:
  • Zhuo Wang

    (College of Information Science and Enginnering, Hohai University, Changzhou 213200, China)

  • Jinrong Shen

    (College of Information Science and Enginnering, Hohai University, Changzhou 213200, China)

  • Yang Xu

    (College of Information Science and Enginnering, Hohai University, Changzhou 213200, China)

Abstract

Accurate State of Charge (SoC) estimation is pivotal in advancing battery technology. In order to enhance the precision of SoC estimation, this study introduces the 2RC equivalent circuit model for lithium batteries. The Adaptive Extended Sliding Innovation Filter (AESIF) algorithm merges the model’s predictive outcomes with observation results. However, further improvements are required for this algorithm to perform optimally in strong noise environments. By adapting to observation noise and utilizing PID control to adjust the sliding boundary layer, the algorithm can accommodate varying noise levels and control interference fluctuations within specific limits. This study enhances the AESIF algorithm in these areas, proposing an improved version (IAESIF) to elevate performance in strong noise environments and improve overall estimation accuracy. Comprehensive tests were conducted under diverse operational conditions and temperatures, with results indicating that, compared to the EKF and the AESIF algorithm in strong noise environments, the IAESIF algorithm demonstrates improved noise adaptation and overall estimation accuracy.

Suggested Citation

  • Zhuo Wang & Jinrong Shen & Yang Xu, 2024. "State-of-Charge Estimation for Lithium-Ion Battery Base on Adaptive Extended Sliding Innovation Filter," Energies, MDPI, vol. 17(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3495-:d:1436363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3495/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3495-:d:1436363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.