IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2648-d1094350.html
   My bibliography  Save this article

Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers

Author

Listed:
  • Michal Kaczmarek

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-537 Lodz, Poland)

  • Ernest Stano

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-537 Lodz, Poland)

Abstract

Power grids are a combined system where the electrical energy produced by the power plants is transmitted to consumers. This forms a specific interdependence where the recipients have a significant impact on the power quality. Therefore, the nonlinear loads connected by households and industrial customers cause current and voltage distortion in the power networks. This creates the need for accurate measurement of nonsinusoidal voltage and current composed not only from the fundamental component but also containing higher harmonics, interharmonics, and subharmonics. In order to ensure high transformation accuracy of distorted current and voltage, the inductive instrument transformers have to be tested in these conditions. Many papers describe their behavior during the transformation of sinusoidal current or voltage. Nowadays, the scientific field in this scope is focused on the evaluation of their exploitation properties for distorted signals. The common problem of inductive instrument transformers is the self-generation of low-order higher harmonics to the secondary current or voltage. In the case of the inductive VTs, an additional problem results from the resonance caused by the parasitic capacitance of the primary winding. The proposed solutions to compensate for the values of current or voltage errors and phase displacement of inductive instrument transformers are also analyzed.

Suggested Citation

  • Michal Kaczmarek & Ernest Stano, 2023. "Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers," Energies, MDPI, vol. 16(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2648-:d:1094350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michal Kaczmarek & Ernest Stano, 2021. "Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers?," Energies, MDPI, vol. 14(15), pages 1-16, July.
    2. Michal Kaczmarek & Ernest Stano, 2021. "Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers," Energies, MDPI, vol. 14(21), pages 1-16, October.
    3. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers?," Energies, MDPI, vol. 15(15), pages 1-12, August.
    4. Wei Chen & Jien Ma & Xiaoyan Huang & Youtong Fang, 2015. "Predicting Iron Losses in Laminated Steel with Given Non-Sinusoidal Waveforms of Flux Density," Energies, MDPI, vol. 8(12), pages 1-15, December.
    5. Ernest Stano, 2021. "The Method to Determine the Turns Ratio Correction of the Inductive Current Transformer," Energies, MDPI, vol. 14(24), pages 1-16, December.
    6. Elzbieta Lesniewska, 2021. "Influence of the Selection of the Core Shape and Winding Arrangement on the Accuracy of Current Transformers with Through-Going Primary Cable," Energies, MDPI, vol. 14(7), pages 1-13, March.
    7. Gabriella Crotti & Giovanni D’Avanzo & Domenico Giordano & Palma Sara Letizia & Mario Luiso, 2021. "Extended SINDICOMP: Characterizing MV Voltage Transformers with Sine Waves," Energies, MDPI, vol. 14(6), pages 1-16, March.
    8. Elzbieta Lesniewska, 2022. "Modern Methods of Construction Problem Solving in Designing Various Types of Instrument Transformers," Energies, MDPI, vol. 15(21), pages 1-26, November.
    9. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy," Energies, MDPI, vol. 15(17), pages 1-11, August.
    10. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer," Energies, MDPI, vol. 15(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2023. "The Reference Wideband Inductive Current Transformer," Energies, MDPI, vol. 16(21), pages 1-13, October.
    2. Denise Fonseca Resende & Leandro Rodrigues Manso Silva & Erivelton Geraldo Nepomuceno & Carlos Augusto Duque, 2023. "Optimizing Instrument Transformer Performance through Adaptive Blind Equalization and Genetic Algorithms," Energies, MDPI, vol. 16(21), pages 1-17, October.
    3. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2023. "Evaluation of the Optional Wideband Accuracy of Inductive Current Transformers in Accordance with the Standard IEC 61869-1 Ed.2," Energies, MDPI, vol. 16(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Kaczmarek & Ernest Stano, 2023. "Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms," Energies, MDPI, vol. 16(11), pages 1-17, May.
    2. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.
    3. Michal Kaczmarek & Ernest Stano, 2023. "New Approach to Evaluate the Transformation Accuracy of Inductive CTs for Distorted Current," Energies, MDPI, vol. 16(7), pages 1-15, March.
    4. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy," Energies, MDPI, vol. 15(17), pages 1-11, August.
    5. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers?," Energies, MDPI, vol. 15(15), pages 1-12, August.
    6. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range," Energies, MDPI, vol. 15(19), pages 1-15, September.
    7. Michal Kaczmarek, 2022. "Two Channels Opto-Isolation Circuit for Measurements of the Differential Voltage of Voltage Transformers and Dividers," Energies, MDPI, vol. 15(7), pages 1-15, April.
    8. Giovanni Artale & Nicola Panzavecchia & Valentina Cosentino & Antonio Cataliotti & Manel Ben-Romdhane & Amel Benazza-Ben Yahia & Valeria Boscaino & Noureddine Ben Othman & Vito Ditta & Michele Fiorino, 2023. "CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards," Energies, MDPI, vol. 16(10), pages 1-25, May.
    9. Roman Gozdur & Piotr Gębara & Krzysztof Chwastek, 2020. "A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si) 13 -H Type Alloys," Energies, MDPI, vol. 13(6), pages 1-15, March.
    10. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    11. Marco Pau & Paolo Attilio Pegoraro, 2022. "Monitoring and Automation of Complex Power Systems," Energies, MDPI, vol. 15(8), pages 1-3, April.
    12. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    13. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer," Energies, MDPI, vol. 15(15), pages 1-16, July.
    14. Michal Kaczmarek & Ernest Stano, 2021. "Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers," Energies, MDPI, vol. 14(21), pages 1-16, October.
    15. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2023. "The Reference Wideband Inductive Current Transformer," Energies, MDPI, vol. 16(21), pages 1-13, October.
    16. Michal Kaczmarek & Ernest Stano, 2021. "Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers?," Energies, MDPI, vol. 14(15), pages 1-16, July.
    17. Haonan Tian & Zhongbao Wei & Sriram Vaisambhayana & Madasamy Thevar & Anshuman Tripathi & Philip Kjær, 2019. "A Coupled, Semi-Numerical Model for Thermal Analysis of Medium Frequency Transformer," Energies, MDPI, vol. 12(2), pages 1-16, January.
    18. Elzbieta Lesniewska & Jan Olak, 2022. "Analysis of the Operation of Cascade Current Transformers for Measurements of Short-Circuit Currents with a Non-Periodic Component with a Large Time Constant of Its Decay," Energies, MDPI, vol. 15(8), pages 1-14, April.
    19. Wojciech Kraszewski & Przemysław Syrek & Mateusz Mitoraj, 2022. "Methods of Ferroresonance Mitigation in Voltage Transformers in a 30 kV Power Supply Network," Energies, MDPI, vol. 15(24), pages 1-17, December.
    20. Marek Gołębiowski & Lesław Gołębiowski & Andrzej Smoleń & Damian Mazur, 2020. "Direct Consideration of Eddy Current Losses in Laminated Magnetic Cores in Finite Element Method (FEM) Calculations Using the Laplace Transform," Energies, MDPI, vol. 13(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2648-:d:1094350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.