IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7201-d1265107.html
   My bibliography  Save this article

Selective Catalytic Hydrogenation of Vegetable Oils over Copper-Based Catalysts Supported on Amorphous Silica

Author

Listed:
  • Umberto Pasqual Laverdura

    (Dipartimento di Tecnologie Energetiche e Fonti Rinnovabili, ENEA Centro di ricerche Casaccia, Via Anguillarese 391, Santa Maria di Galeria, 00123 Roma, Italy)

  • Leucio Rossi

    (Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy)

  • Claire Courson

    (Institute of Chemistry and Processes for Energy, Environment and Health, University of Strasbourg, ECPM, 25 Rue Becquerel, CEDEX 2, 67087 Strasbourg, France)

  • Antonio Zarli

    (NextChem S.p.A., Via di Vannina, 88/94, 00156 Roma, Italy)

  • Katia Gallucci

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1–Loc. Monteluco di Roio, 67100 L’Aquila, Italy)

Abstract

This work aims to study the selective catalytic hydrogenation of vegetable oils to maximize oleic acid content and expand the range of non-edible uses. Oleic acid (C18:1) is suitable for use as a biodegradable lubricant and is a building block in producing polymers and plastics from renewable resources. The challenge is the synthesis of heterogeneous catalysts, allowing for a maximum yield of C18:1 and low formation of the corresponding saturated acid (stearic acid). New copper-based catalysts on silica were synthesized via two synthesis methods: hydrolysis precipitation and ammonia-evaporation. Experimental tests were carried out at a lab scale operating in a semi-batch mode. The best conversion reached 90% for C18:3 and 80% for C18:2 HP Cu-silica catalyst results, the best candidate for an industrial case study. Good results were obtained in the selectivities of oleic acid production and cis/trans isomers ratio. The modified return on the investment of the designed hydrogenation plant provides the revenues of the capital costs in less than one year.

Suggested Citation

  • Umberto Pasqual Laverdura & Leucio Rossi & Claire Courson & Antonio Zarli & Katia Gallucci, 2023. "Selective Catalytic Hydrogenation of Vegetable Oils over Copper-Based Catalysts Supported on Amorphous Silica," Energies, MDPI, vol. 16(20), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7201-:d:1265107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark E. Davis, 2002. "Ordered porous materials for emerging applications," Nature, Nature, vol. 417(6891), pages 813-821, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Liu & Zhengxin Yan & Gaoliang Zhou, 2021. "Phase transitions of a double occupancy lattice gas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(6), pages 1-7, June.
    2. Xinyu Li & He Han & Nikolaos Evangelou & Noah J. Wichrowski & Peng Lu & Wenqian Xu & Son-Jong Hwang & Wenyang Zhao & Chunshan Song & Xinwen Guo & Aditya Bhan & Ioannis G. Kevrekidis & Michael Tsapatsi, 2023. "Machine learning-assisted crystal engineering of a zeolite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Mudassir, Muhammad Ahmad & Kousar, Shazia & Ehsan, Muhammad & Usama, Muhammad & Sattar, Umer & Aleem, Muhammad & Naheed, Irum & Saeed, Osama Bin & Ahmad, Mehmood & Akbar, Hafiz Favad & Ud Din, Muhamma, 2023. "Emulsion-derived porous carbon-based materials for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Yang Yang & Weiyue Zhou & Sheng Yin & Sarah Y. Wang & Qin Yu & Matthew J. Olszta & Ya-Qian Zhang & Steven E. Zeltmann & Mingda Li & Miaomiao Jin & Daniel K. Schreiber & Jim Ciston & M. C. Scott & John, 2023. "One dimensional wormhole corrosion in metals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    6. Noshadi, Iman & Kanjilal, Baishali & Du, Shouchang & Bollas, George M. & Suib, Steven L. & Provatas, Anthony & Liu, Fujian & Parnas, Richard S., 2014. "Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer," Applied Energy, Elsevier, vol. 129(C), pages 112-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7201-:d:1265107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.