IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5360-d1193718.html
   My bibliography  Save this article

Microstructure and First Hydrogenation Properties of Ti 16 V 60 Cr 24−x Fe x + 4 wt.% Zr Alloy for x = 0, 4, 8, 12, 16, 20, 24

Author

Listed:
  • Francia Ravalison

    (Hydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A5H7, Canada)

  • Jacques Huot

    (Hydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A5H7, Canada)

Abstract

In body-centered cubic (BCC) alloys of transition elements, elemental addition or substitution in the vanadium-based alloys can be beneficial for improving the hydrogen storage properties and for reducing the production cost. In this context, the current study focused on the effect of the substitution of Cr by Fe in Ti 16 V 60 Cr 24−x Fe x + 4 wt.% Zr alloys where x = 0, 4, 8, 12, 16, 20, 24. The microstructure of each alloy was composed of a matrix having a chemical composition close to the nominal one and a Zr-rich region. From X-ray diffraction patterns, it was found that the matrix has a BCC structure, and the Zr-rich regions present the C14 Laves phase structure. The lattice parameter of BCC phases decreased linearly with x, in accordance with Vegard’s law. The measurement of the first hydrogenation at 298 K under 3 MPa of hydrogen revealed a decrease in the maximum hydrogen capacity: 3.8 wt.% for x = 0, 3.1 wt.% for x = 4 and around 2 wt.% for x = 8 to 24. The XRD patterns after hydrogenation showed a BCT phase for all alloys, with a C14 phase for x = 4, 8, 12 and with C14 and C15 for x = 16, 20 and 24.

Suggested Citation

  • Francia Ravalison & Jacques Huot, 2023. "Microstructure and First Hydrogenation Properties of Ti 16 V 60 Cr 24−x Fe x + 4 wt.% Zr Alloy for x = 0, 4, 8, 12, 16, 20, 24," Energies, MDPI, vol. 16(14), pages 1, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5360-:d:1193718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jigang & Guo, Yanru & Jiang, Xiaojing & Li, Shuan & Li, Xingguo, 2020. "Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe," Renewable Energy, Elsevier, vol. 153(C), pages 1140-1154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
    2. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage," Renewable Energy, Elsevier, vol. 198(C), pages 1186-1192.
    3. Jiang, Wenbin & He, Changchun & Yang, Xiaobao & Xiao, Xuezhang & Ouyang, Liuzhang & Zhu, Min, 2022. "Influence of element substitution on structural stability and hydrogen storage performance: A theoretical and experimental study on TiCr2-xMnx alloy," Renewable Energy, Elsevier, vol. 197(C), pages 564-573.
    4. Cermak, Jiri & Kral, Lubomir & Roupcova, Pavla, 2022. "Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg," Renewable Energy, Elsevier, vol. 188(C), pages 411-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5360-:d:1193718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.