IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5277-d1190719.html
   My bibliography  Save this article

Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review

Author

Listed:
  • Arvind Kumar

    (Department of Metallurgical and Materials Engineering, National Institute of Technology, Jamshedpur 831014, India)

  • Rina Sahu

    (Department of Metallurgical and Materials Engineering, National Institute of Technology, Jamshedpur 831014, India)

  • Sunil Kumar Tripathy

    (Research and Development Division, Tata Steel Ltd., Jamshedpur 831001, India)

Abstract

The present literature review explores the energy-efficient ultrafine grinding of particles using stirred mills. The review provides an overview of the different techniques for size reduction and the impact of energy requirements on the choice of stirred mills. It also discusses the factors, including the design, operating parameters, and feed material properties, influencing the grinding performance. The review concludes that stirred mills have significant potential for achieving the energy-efficient ultrafine grinding of particles. Stirred mills have unique designs and operations, which provide higher grinding efficiency, lower energy consumption, and reduced media consumption compared to traditional tumbling mills. The review highlights the advantages of stirred mills over conventional grinding methods and their potential to revolutionise industrial processes while lowering the environmental impacts.

Suggested Citation

  • Arvind Kumar & Rina Sahu & Sunil Kumar Tripathy, 2023. "Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review," Energies, MDPI, vol. 16(14), pages 1-37, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5277-:d:1190719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajaonarivony, Karine Rova & Mayer-Laigle, Claire & Piriou, Bruno & Rouau, Xavier, 2021. "Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stover, Luke & Caillol, Christian & Piriou, Bruno & Mayer-Laigle, Claire & Rouau, Xavier & Vaïtilingom, Gilles, 2023. "A phenomenological description of biomass powder combustion in internal combustion engines," Energy, Elsevier, vol. 274(C).
    2. Weronika Kruszelnicka & Jakub Hlosta & Jan Diviš & Łukasz Gierz, 2021. "Study of the Relationships between Multi-Hole, Multi-Disc Mill Performance Parameters and Comminution Indicators," Sustainability, MDPI, vol. 13(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5277-:d:1190719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.