IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4779-d1173633.html
   My bibliography  Save this article

The Effect of a Magnetic Field on Solid–Liquid Contact Electrification for Streaming Flow Energy Harvesting

Author

Listed:
  • Thanh Ha Nguyen

    (School of Mechanical Engineering, University of Ulsan, 93, Deahak-ro, Nam-gu, Ulsan 44610, Republic of Korea)

  • Kyoung Kwan Ahn

    (School of Mechanical Engineering, University of Ulsan, 93, Deahak-ro, Nam-gu, Ulsan 44610, Republic of Korea)

Abstract

In recent years, the triboelectric nanogenerator (TENG) has been recognized as a promising method for energy harvesting and self-powered devices. However, in order to improve the output efficiency of the TENG, it is necessary to change the types of dielectric materials, which requires advanced technology and a high cost to implement. To address this issue, we developed a parallel electrode magnetic-TENG (Mag-TENG) based on contact electrification of a liquid–solid interface under the effect of the magnetic field, which enhances the output performance of the TENG without having to develop the dielectric material. Our experimental results achieved a higher output of the TENG under the influence of a magnetic field when an increase of the magnetic field strength went from 0 to 360 mT, and the flow rate of unsteady seawater was variable from 390 to 690 mL/min. Specifically, compared to the without-magnetic field case, the output current increased by approximately 6.5 times and the output voltage by 2.7 times. These findings suggested that using a magnetic field to enhance the TENG’s efficiency has significant potential for energy harvesting from seawater and self-powered flow sensors.

Suggested Citation

  • Thanh Ha Nguyen & Kyoung Kwan Ahn, 2023. "The Effect of a Magnetic Field on Solid–Liquid Contact Electrification for Streaming Flow Energy Harvesting," Energies, MDPI, vol. 16(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4779-:d:1173633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    2. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaojie Chen & Shilong Zhao & Caofeng Pan & Yunlong Zi & Fangcheng Wang & Cheng Yang & Zhong Lin Wang, 2022. "A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Chichu Qin & Dong Wang & Yumin Liu & Pengkun Yang & Tian Xie & Lu Huang & Haiyan Zou & Guanwu Li & Yingpeng Wu, 2021. "Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    10. Qiang, Ziyi & Cui, Peilin & Tian, Chenyun & Liu, Runkeng & Shen, Hong & Liu, Zhenyu, 2023. "Enhancing power generation for carbon black film device based on optimization of liquid capillary flow," Applied Energy, Elsevier, vol. 351(C).
    11. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Zhipeng Zhao & Huizeng Li & An Li & Wei Fang & Zheren Cai & Mingzhu Li & Xiqiao Feng & Yanlin Song, 2021. "Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Hang Zhang & Sankaran Sundaresan & Michael A. Webb, 2024. "Thermodynamic driving forces in contact electrification between polymeric materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Yong Zhang & Tingting Yang & Kedong Shang & Fengmei Guo & Yuanyuan Shang & Shulong Chang & Licong Cui & Xulei Lu & Zhongbao Jiang & Jian Zhou & Chunqiao Fu & Qi-Chang He, 2022. "Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    18. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    20. Hu, Yanqiang & Wang, Xiaoli & Qin, Yechen & Li, Zhihao & Wang, Chenfei & Wu, Heng, 2022. "A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4779-:d:1173633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.