IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2882-d794153.html
   My bibliography  Save this article

Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core

Author

Listed:
  • Pedro P. C. Bhagubai

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

  • Luís F. D. Bucho

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

  • João F. P. Fernandes

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

  • P. J. Costa Branco

    (IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal)

Abstract

The use of a cobalt-iron (VaCoFe) core is investigated as an alternative to silicon-iron (FeSi) in the design of interior permanent magnet synchronous motors (IPMSM). Considering VaCoFe and FeSi cores, a spoke-type IPMSM geometry is optimized for a torque range up to 40 N·m, providing a general comparative analysis between materials. This is done considering the application of a four-motor competition vehicle’s powertrain. A genetic optimization algorithm is coupled to the motor’s electromagnetic and thermal hybrid analytical/finite-element model to provide sufficiently accurate results within a feasible time. VaCoFe allows an estimated increase of up to 64% in torque for the same efficiency level, or up to 5% in efficiency for the same torque. After optimization and using a detailed time-dependent model, a potential 3.2% increase in efficiency, a core weight reduction of 4.1%, and a decrease of 9.6% in the motor’s core volume were found for the VaCoFe at 20 N·m. In addition, for the same motor volume, the VaCoFe allows an increase of 51.9% in torque with an increase of 1.1% in efficiency when compared with FeSi.

Suggested Citation

  • Pedro P. C. Bhagubai & Luís F. D. Bucho & João F. P. Fernandes & P. J. Costa Branco, 2022. "Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core," Energies, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2882-:d:794153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    2. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    3. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    5. Song, Zaixin & Liu, Chunhua, 2022. "Energy efficient design and implementation of electric machines in air transport propulsion system," Applied Energy, Elsevier, vol. 322(C).
    6. Jiahui Huang & Weinong Fu & Shuangxia Niu & Xing Zhao & Yanding Bi & Zhenyang Qiao, 2022. "A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines," Energies, MDPI, vol. 15(24), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2882-:d:794153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.