IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9385-d1000467.html
   My bibliography  Save this article

A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines

Author

Listed:
  • Jiahui Huang

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Weinong Fu

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Shuangxia Niu

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Xing Zhao

    (Department of Electronic Engineering, University of York, York YO10 5DD, UK)

  • Yanding Bi

    (Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Zhenyang Qiao

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%.

Suggested Citation

  • Jiahui Huang & Weinong Fu & Shuangxia Niu & Xing Zhao & Yanding Bi & Zhenyang Qiao, 2022. "A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9385-:d:1000467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Ya Li & Hui Yang & Heyun Lin & Shuhua Fang & Weijia Wang, 2019. "A Novel Magnet-Axis-Shifted Hybrid Permanent Magnet Machine for Electric Vehicle Applications," Energies, MDPI, vol. 12(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Gierczynski & Lech M. Grzesiak, 2021. "Comparative Analysis of the Steady-State Model Including Non-Linear Flux Linkage Surfaces and the Simplified Linearized Model when Applied to a Highly-Saturated Permanent Magnet Synchronous Machine—Ev," Energies, MDPI, vol. 14(9), pages 1-20, April.
    2. Ling Ding & Yuan Cheng & Tianxu Zhao & Kai Yao & Yao Wang & Shumei Cui, 2023. "Design and Optimization of an Asymmetric Rotor IPM Motor with High Demagnetization Prevention Capability and Robust Torque Performance," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    5. Yawei Wang & Nicola Bianchi & Ronghai Qu, 2022. "Comparative Study of Non-Rare-Earth and Rare-Earth PM Motors for EV Applications," Energies, MDPI, vol. 15(8), pages 1-18, April.
    6. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    7. Pedro P. C. Bhagubai & Luís F. D. Bucho & João F. P. Fernandes & P. J. Costa Branco, 2022. "Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core," Energies, MDPI, vol. 15(8), pages 1-21, April.
    8. Shaopeng Wu & Jinyang Zhou & Xinmiao Zhang & Jiaqiang Yu, 2022. "Design and Research on High Power Density Motor of Integrated Motor Drive System for Electric Vehicles," Energies, MDPI, vol. 15(10), pages 1-23, May.
    9. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    10. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    11. Muhammad Ramiz Zakir & Junaid Ikram & Saleem Iqbal Shah & Syed Sabir Hussain Bukhari & Salman Ali & Fabrizio Marignetti, 2022. "Performance Improvement of Axial Flux Permanent Magnet Machine with Phase Group Concentrated Coil Winding," Energies, MDPI, vol. 15(19), pages 1-22, October.
    12. Song, Zaixin & Liu, Chunhua, 2022. "Energy efficient design and implementation of electric machines in air transport propulsion system," Applied Energy, Elsevier, vol. 322(C).
    13. Natalia Radwan-Pragłowska & Tomasz Węgiel, 2022. "Permanent Magnet Selections for AFPM Disc Generators," Energies, MDPI, vol. 15(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9385-:d:1000467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.