IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2673-d787701.html
   My bibliography  Save this article

Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage

Author

Listed:
  • Jiahui Tan

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Mu Chai

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Kuanfang He

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Yong Chen

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

Abstract

A 2-D numerical simulation model was established based on a small-sized metal hydride storage tank, and the model was validated by the existing experiments. An external cooling bath was equipped to simulate the heating effects of hydrogen absorption reactions. Furthermore, both the type and the flow rate of the cooling fluids in the cooling bath were altered, so that changes in temperature and hydrogen storage capacity in the hydrogen storage model could be analyzed. It is demonstrated that the reaction rate in the center of the hydrogen storage tank gradually becomes lower than that at the wall surface. When the flow rate of the fluid is small, significant differences can be found in the cooling liquid temperature at the inlet and the outlet cooling bath. In areas adjacent to its inlet, the reaction rate is higher than that at the outlet, and a better cooling effect is produced by water. As the flow rate increases, the total time consumed by hydrogen adsorption reaction is gradually reduced to a constant value. At the same flow rate, the wall surface of the tank shows a reaction rate insignificantly different from that in its center, provided that cooling water or oil coolant is replaced with air.

Suggested Citation

  • Jiahui Tan & Mu Chai & Kuanfang He & Yong Chen, 2022. "Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage," Energies, MDPI, vol. 15(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2673-:d:787701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    2. Suárez, S.H. & Chabane, D. & N'Diaye, A. & Ait-Amirat, Y. & Djerdir, A., 2022. "Static and dynamic characterization of metal hydride tanks for energy management applications," Renewable Energy, Elsevier, vol. 191(C), pages 59-70.
    3. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    4. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    5. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    6. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
    7. Min Liu & Bo Zhao & Yaze Li & Zhen Wang & Xuesong Zhang & Liang Tong & Tianqi Yang & Xuefang Li & Jinsheng Xiao, 2023. "Parametric Study on Fin Structure and Injection Tube in Metal Hydride Tank Packed with LaNi 5 Alloy for Efficient and Safe Hydrogen Storage," Sustainability, MDPI, vol. 15(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2673-:d:787701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.