IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2428-d779726.html
   My bibliography  Save this article

Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances

Author

Listed:
  • Chung-Seong Lee

    (R&D Center, Mando, Seongnam 13486, Korea)

  • Hae-Joong Kim

    (Department of Electrical Engineering, Kyeongnam Namhae University, Namhae 52422, Korea)

Abstract

This paper is a study of unintended cogging torque for the IPMSM (Internal Permanent Magnet Synchronous Motor) of an EPS (Electric Power Steering) system considering manufacturing disturbances. The IPMSM has been used recently in EPS systems with high power density. However, due to the complex rotor shape of the IPMSM, considering manufacturing disturbances, it is expected to reduce the quality of IPMSM performance. Therefore, the unintended cogging torque for motor quality is also expected to increase. This paper analyzes the causes of unintended cogging torque in the IPMSM of an EPS system considering manufacturing disturbances. Based on the harmonic order analysis of measured cogging torque for the IPMSM prototypes, the causes of unintended cogging torque in the IPMSM are verified due to the manufacturing disturbances.

Suggested Citation

  • Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2428-:d:779726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sakthivel Ganesan & Prince Winston David & Praveen Kumar Balachandran & Devakirubakaran Samithas, 2021. "Intelligent Starting Current-Based Fault Identification of an Induction Motor Operating under Various Power Quality Issues," Energies, MDPI, vol. 14(2), pages 1-13, January.
    2. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. Chung-Seong Lee & Kyoung-Soo Cha & Jin-Cheol Park & Myung-Seop Lim, 2020. "Tolerance-Insensitive Design of the Magnet Shape for a Surface Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ozturk Tosun & Necibe Fusun Oyman Serteller, 2022. "The Design of the Outer-Rotor Brushless DC Motor and an Investigation of Motor Axial-Length-to-Pole-Pitch Ratio," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    2. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    3. Jie Yu & Youjun Zhang & Hongyuan Shen & Xiaoqin Zheng, 2022. "Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor," Energies, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    2. Damian Grzechca & Paweł Rybka & Roman Pawełczyk, 2021. "Level Crossing Barrier Machine Faults and Anomaly Detection with the Use of Motor Current Waveform Analysis," Energies, MDPI, vol. 14(11), pages 1-14, May.
    3. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    4. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    5. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
    6. Jin-Cheol Park & Soo-Hwan Park & Jae-Hyun Kim & Soo-Gyung Lee & Geun-Ho Lee & Myung-Seop Lim, 2021. "Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity," Energies, MDPI, vol. 14(10), pages 1-19, May.
    7. Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    8. Nikolaos Chrysochoidis-Antsos & Gerard J.W. van Bussel & Jan Bozelie & Sander M. Mertens & Ad J.M. van Wijk, 2021. "Performance Characteristics of A Micro Wind Turbine Integrated on A Noise Barrier," Energies, MDPI, vol. 14(5), pages 1-29, February.
    9. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2428-:d:779726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.