IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291042.html
   My bibliography  Save this article

Finite-time robust speed control of synchronous reluctance motor using disturbance rejection sliding mode control with advanced reaching law

Author

Listed:
  • Usman Nasim
  • Abdul Rauf Bhatti
  • Muhammad Farhan
  • Akhtar Rasool
  • Arslan Dawood Butt

Abstract

In recent years, there has been a significant focus on synchronous reluctance motors (SynRM) owing to their impressive efficiency and absence of magnetic material. Although the SynRM shows great potential for use in electric vehicles, its widespread adoption is limited by unmodeled dynamics and external disturbances. Moreover, the uncertainty factor significantly restricts SynRM’s peak efficiency and superior control performance, leading to an unjustifiable current loop reference command. To address these issues, this work presents various new research contributions which focus on the robust control of SynRM to optimize performance through the novel reaching law-based sliding mode control. Initially, a novel advanced sliding mode control reaching law (ASMCRL) with adaptive gain is proposed, to enhance the acceleration of the system state reaching the sliding surface. After that, an extended state observer (ESO) is designed to estimate and compensate for the overall disturbances of the system. Finally, the ASMCRL and ESO are integrated to design two nonlinear controllers namely, the disturbance-rejection sliding mode controller (DRSMC) and the disturbance-rejection sliding mode speed regulator (DRSMSR) for SynRM. The proposed DRSMSR eliminates the steady-state error and eradicates inherent chattering in DRSMC. Moreover, this yields a system trajectory that converges to a predetermined proximity of the sliding surface, irrespective of any lumped disturbances. The steady-state error of DRSMSR is less as compared to DRSMC. Furthermore, the speed response of this technique is 22.62% faster as compared to the state-of-the-art finite-time adaptive terminal sliding mode control. Additionally, the asymptotic stability of the proposed system is validated using Lyapunov’s theorem. Thus the experimental results demonstrate the effectiveness and robustness of the proposed approach.

Suggested Citation

  • Usman Nasim & Abdul Rauf Bhatti & Muhammad Farhan & Akhtar Rasool & Arslan Dawood Butt, 2023. "Finite-time robust speed control of synchronous reluctance motor using disturbance rejection sliding mode control with advanced reaching law," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0291042
    DOI: 10.1371/journal.pone.0291042
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291042
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291042&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Afaq Ahmed & Syed Bilal Javed & Ali Arshad Uppal & Jamshed Iqbal, 2023. "Development of CAVLAB—A Control-Oriented MATLAB Based Simulator for an Underground Coal Gasification Process," Mathematics, MDPI, vol. 11(11), pages 1-26, May.
    2. Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
    3. Ahmed Farhan & Mohamed Abdelrahem & Amr Saleh & Adel Shaltout & Ralph Kennel, 2020. "Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using Online Parameter Estimation," Energies, MDPI, vol. 13(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omer Saleem & Jamshed Iqbal, 2024. "Blood-glucose regulator design for diabetics based on LQIR-driven Sliding-Mode-Controller with self-adaptive reaching law," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-36, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozturk Tosun & Necibe Fusun Oyman Serteller, 2022. "The Design of the Outer-Rotor Brushless DC Motor and an Investigation of Motor Axial-Length-to-Pole-Pitch Ratio," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    2. Yuanzhe Zhao & Linjie Ren & Zhiming Liao & Guobin Lin, 2021. "A Novel Model Predictive Direct Torque Control Method for Improving Steady-State Performance of the Synchronous Reluctance Motor," Energies, MDPI, vol. 14(8), pages 1-18, April.
    3. Mohamed Abdelrahem & José Rodríguez & Ralph Kennel, 2020. "Improved Direct Model Predictive Control for Grid-Connected Power Converters," Energies, MDPI, vol. 13(10), pages 1-14, May.
    4. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    5. Ibrahim Harbi & Mohamed Abdelrahem & Mostafa Ahmed & Ralph Kennel, 2020. "Reduced-Complexity Model Predictive Control with Online Parameter Assessment for a Grid-Connected Single-Phase Multilevel Inverter," Sustainability, MDPI, vol. 12(19), pages 1-23, September.
    6. Jie Yu & Youjun Zhang & Hongyuan Shen & Xiaoqin Zheng, 2022. "Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor," Energies, MDPI, vol. 15(18), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.