IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p500-d722208.html
   My bibliography  Save this article

Solar Energy Production in India and Commonly Used Technologies—An Overview

Author

Listed:
  • Aditya Pandey

    (Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India)

  • Pramod Pandey

    (Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA)

  • Jaya Shankar Tumuluru

    (Energy Systems Laboratory, Energy Systems and Environment Directorate, Idaho National Laboratory, 750 MK Simpson Blvd., Idaho Falls, ID 83415, USA)

Abstract

This review uses a more holistic approach to provide comprehensive information and up-to-date knowledge on solar energy development in India and scientific and technological advancement. This review describes the types of solar photovoltaic (PV) systems, existing solar technologies, and the structure of PV systems. Substantial emphasis has been given to understanding the potential impacts of COVID-19 on the solar energy installed capacity. In addition, we evaluated the prospects of solar energy and the revival of growth in solar energy installation post-COVID-19. Further, we described the challenges caused by transitions and cloud enhancement on smaller and larger PV systems on the solar power amended grid-system. While the review is focused on evaluating the solar energy growth in India, we used a broader approach to compare the existing solar technologies available across the world. The need for recycling waste from solar energy systems has been emphasized. Improved PV cell efficiencies and trends in cost reductions have been provided to understand the overall growth of solar-based energy production. Further, to understand the existing technologies used in PV cell production, we have reviewed monocrystalline and polycrystalline cell structures and their limitations. In terms of solar energy production and the application of various solar technologies, we have used the latest available literature to cover stand-alone PV and on-grid PV systems. More than 5000 trillion kWh/year solar energy incidents over India are estimated, with most parts receiving 4–7 kWh/m 2 . Currently, energy consumption in India is about 1.13 trillion kWh/year, and production is about 1.38 trillion kWh/year, which indicates production capacities are slightly higher than actual demand. Out of a total of 100 GW of installed renewable energy capacity, the existing solar capacity in India is about 40 GW. Over the past ten years, the solar energy production capacity has increased by over 24,000%. By 2030, the total renewable energy capacity is expected to be 450 GW, and solar energy is likely to play a crucial role (over 60%). In the wake of the increased emphasis on solar energy and the substantial impacts of COVID-19 on solar energy installations, this review provides the most updated and comprehensive information on the current solar energy systems, available technologies, growth potential, prospect of solar energy, and need for growth in the solar waste recycling industry. We expect the analysis and evaluation of technologies provided here will add to the existing literature to benefit stakeholders, scientists, and policymakers.

Suggested Citation

  • Aditya Pandey & Pramod Pandey & Jaya Shankar Tumuluru, 2022. "Solar Energy Production in India and Commonly Used Technologies—An Overview," Energies, MDPI, vol. 15(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:500-:d:722208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/500/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Ngakan Ketut Acwin Dwijendra & Untung Rahardja & Narukullapati Bharath Kumar & Indrajit Patra & Musaddak Maher Abdul Zahra & Yulia Finogenova & John William Grimaldo Guerrero & Samar Emad Izzat & Taif, 2022. "An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    3. Tadeusz Olejarz & Dominika Siwiec & Andrzej Pacana, 2022. "Method of Qualitative–Environmental Choice of Devices Converting Green Energy," Energies, MDPI, vol. 15(23), pages 1-22, November.
    4. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:500-:d:722208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.