IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8621-d975622.html
   My bibliography  Save this article

Position Estimation of Multiple Receiving Coils and Power Transmission Control for WPT without Feedback

Author

Listed:
  • Jun Heo

    (Department of AI Convergence Network, Ajou University, Suwon 16499, Republic of Korea)

  • Sang-Won Kim

    (Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea)

  • In-Kui Cho

    (Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea)

  • Yong Bae Park

    (Department of AI Convergence Network, Ajou University, Suwon 16499, Republic of Korea
    Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea)

Abstract

It is important to determine the position of the receiver (Rx) coils in wireless power transfer (WPT) system, and to control the power transmitted to the Rx coil based on this result. In particular, in a situation where there is no feedback between the primary side and the secondary side, it is difficult to control the received power because the information is limited. In this paper, a method for determining the position of the Rx coils and controlling the received power using limited parameters in a feedback-free WPT system is proposed. The proposed method is verified by constructing a 4 × 2 WPT system, and it is validated that the simulation result and the experimental result are consistent well. Furthermore, arbitrary power can be transmitted to the Rx coil based on the result of the position of the Rx coil. The experiment is conducted by transmitting about 1 W to Rx 1 and Rx 2, and the efficiency for Rx 1 is about 32.93 % , Rx 2 is 25.03 % , and the overall efficiency is confirmed to be 57.96 % .

Suggested Citation

  • Jun Heo & Sang-Won Kim & In-Kui Cho & Yong Bae Park, 2022. "Position Estimation of Multiple Receiving Coils and Power Transmission Control for WPT without Feedback," Energies, MDPI, vol. 15(22), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8621-:d:975622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    2. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation," Energies, MDPI, vol. 14(23), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    2. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    3. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    4. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    5. Seyit Ahmet Sis & Emre Orta, 2018. "A Cross-Shape Coil Structure for Use in Wireless Power Applications," Energies, MDPI, vol. 11(5), pages 1-14, April.
    6. van der Koogh, Mylène & Chappin, Emile & Heller, Reneé & Lukszo, Zofia, 2023. "Stakeholder prioritizations for electric vehicle charging across time periods," Transport Policy, Elsevier, vol. 142(C), pages 173-189.
    7. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    8. Yujun Shin & Jaehyoung Park & Haerim Kim & Seongho Woo & Bumjin Park & Sungryul Huh & Changmin Lee & Seungyoung Ahn, 2021. "Design Considerations for Adding Series Inductors to Reduce Electromagnetic Field Interference in an Over-Coupled WPT System," Energies, MDPI, vol. 14(10), pages 1-28, May.
    9. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    10. Lin Chen & Jianfeng Hong & Mingjie Guan & Wei Wu & Wenxiang Chen, 2019. "A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, March.
    11. Gongjun Liu & Bo Zhang & Wenxun Xiao & Dongyuan Qiu & Yanfeng Chen & Jiu Guan, 2018. "Omnidirectional Wireless Power Transfer System Based on Rotary Transmitting Coil for Household Appliances," Energies, MDPI, vol. 11(4), pages 1-16, April.
    12. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Yanting Luo & Yongmin Yang & Xisen Wen & Ming Cheng, 2018. "Enhancing the Robustness of the Wireless Power Transfer System to Uncertain Parameter Variations Using an Interval-Based Uncertain Optimization Method," Energies, MDPI, vol. 11(8), pages 1-18, August.
    14. Dongwook Kim & Hongseok Kim & Anfeng Huang & Qiusen He & Hanyu Zhang & Seungyoung Ahn & Yuyu Zhu & Jun Fan, 2019. "Analysis and Introduction of Effective Permeability with Additional Air-Gaps on Wireless Power Transfer Coils for Electric Vehicle Based on SAE J2954 Recommended Practice," Energies, MDPI, vol. 12(24), pages 1-11, December.
    15. Zhongnan Qian & Rui Yan & Zeqian Cheng & Jiande Wu & Xiangning He, 2020. "Magnetic Positioning Technique Integrated with Near-Field Communication for Wireless EV Charging," Energies, MDPI, vol. 13(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8621-:d:975622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.