IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8182-d961511.html
   My bibliography  Save this article

Selective Catalytic Reduction Catalyst Modeling for Control Purposes

Author

Listed:
  • Olov Holmer

    (Division of Vehicular Systems, Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden)

  • Lars Eriksson

    (Division of Vehicular Systems, Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden)

Abstract

In markets with strict emission legislations Selective Catalytic Reduction (SCR) has become the industry standard for NO x abatement in heavy-duty vehicles, and therefore modeling and control of these systems are vital. Many SCR catalyst models are available in the literature and in this paper different models are discussed and classified into groups. Two models, based on the two most popular classes for control-oriented models, are implemented and compared with each other, one based on the continuously stirred-tank reactor approximation, and the other on a quasi-static behavior of the gas phase. The results show that assuming a quasi-static behavior of the gas phase in the catalyst gives better results in terms of accuracy and simulation time, especially when it comes to predictions of ammonia slip.

Suggested Citation

  • Olov Holmer & Lars Eriksson, 2022. "Selective Catalytic Reduction Catalyst Modeling for Control Purposes," Energies, MDPI, vol. 15(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8182-:d:961511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Li & Yan, Fuwu & Hu, Jie & Xi, Guangwei & Liu, Bo & Zeng, Jiawei, 2017. "Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine," Applied Energy, Elsevier, vol. 206(C), pages 959-971.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olov Holmer & Lars Eriksson, 2022. "Predictive Emission Management Based on Pre-Heating for Heavy-Duty Powertrains," Energies, MDPI, vol. 15(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Hu & Junliang Wang & Jiawei Zeng & Xianglin Zhong, 2018. "Model-Based Temperature Sensor Fault Detection and Fault-Tolerant Control of Urea-Selective Catalyst Reduction Control Systems," Energies, MDPI, vol. 11(7), pages 1-17, July.
    2. Kang, Lulu & Lou, Diming & Zhang, Yunhua & Fang, Liang & Luo, Chagen, 2023. "Research on cross sensitivity of NOx sensor and Adblue injection volume in accordance with the actual situation based on cubature Kalman filter," Energy, Elsevier, vol. 284(C).
    3. Zhang, Xuan-Kai & He, Ya-Ling & Li, Meng-Jie & Hu, Xin, 2022. "The study of heat-mass transfer characteristics and multi-objective optimization on electric arc furnace," Applied Energy, Elsevier, vol. 317(C).
    4. Lao, Chung Ting & Akroyd, Jethro & Eaves, Nickolas & Smith, Alastair & Morgan, Neal & Nurkowski, Daniel & Bhave, Amit & Kraft, Markus, 2020. "Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines," Applied Energy, Elsevier, vol. 267(C).
    5. Sung-An Kim, 2021. "A Study on the Predictive Maintenance Algorithms Considering Load Characteristics of PMSMs to Drive EGR Blowers for Smart Ships," Energies, MDPI, vol. 14(18), pages 1-13, September.
    6. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.
    7. Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar, 2020. "Performance, combustion and emission characteristics of a diesel engine fueled with diesel-kerosene-ethanol: A multi-objective optimization study," Energy, Elsevier, vol. 211(C).
    8. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    9. Liu, Wenlong & Gao, Ying & You, Yuelin & Jiang, Changwen & Hua, Taoyi & Xia, Bocong, 2024. "Nonlinear model predictive control(NMPC) of diesel oxidation catalyst (DOC) outlet temperature for active regeneration of diesel particulate filter (DPF) in diesel engine," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8182-:d:961511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.