IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7598-d942571.html
   My bibliography  Save this article

Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility

Author

Listed:
  • Teresa Donateo

    (Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy)

  • Ludovica Spada Chiodo

    (Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy)

  • Antonio Ficarella

    (Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy)

  • Andrea Lunaro

    (Avio Aero, Via Giovanni Amendola 132, 70126 Bari, Italy)

Abstract

A rising number of aerospace manufacturers are working on the development of new solutions in the field of Urban Air Mobility with increasing attention addressing electric and hybrid electric propulsive systems. Hybrid electric propulsive systems potentially offer performance improvements during transient maneuvers, as well as sustaining the engine during flight phases characterized by high power demands. Among the challenges of hybridization in rotorcraft, there is the necessity to predict the dynamic behavior and its effect on the control of rotor shaft speed. In the present study, the dynamic behavior of a parallel hybrid electric propulsive system for a coaxial-rotor air taxi is analyzed in response to a typical sequence of pilot commands that encompasses the range of operations from hover to forward flight. The system is modeled with a dynamic approach and includes sub-models for the coaxial rotors, the turboshaft engine, the electric machine, and the battery. The results of the investigation show a better performance during transients of the hybrid system than a conventional turboshaft configuration, especially if the electric contribution to the power request is coordinated to account for the lag due to slower engine dynamic response.

Suggested Citation

  • Teresa Donateo & Ludovica Spada Chiodo & Antonio Ficarella & Andrea Lunaro, 2022. "Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility," Energies, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7598-:d:942571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teresa Donateo & Antonio Ficarella, 2022. "A Methodology for the Comparative Analysis of Hybrid Electric and All-Electric Power Systems for Urban Air Mobility," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Tribioli & Manfredi Villani, 2022. "Electrified Powertrains for a Sustainable Mobility: Topologies, Design and Integrated Energy Management Strategies," Energies, MDPI, vol. 15(9), pages 1-2, April.
    2. Karim Abu Salem & Giuseppe Palaia & Alessandro A. Quarta & Mario R. Chiarelli, 2023. "Medium-Range Aircraft Conceptual Design from a Local Air Quality and Climate Change Viewpoint," Energies, MDPI, vol. 16(10), pages 1-24, May.
    3. Park, Junhwi & Lee, Donguk & Lim, Daejin & Yee, Kwanjung, 2022. "A refined sizing method of fuel cell-battery hybrid system for eVTOL aircraft," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7598-:d:942571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.