IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5589-d877824.html
   My bibliography  Save this article

Flexible Interconnected Distribution Network with Embedded DC System and Its Dynamic Reconfiguration

Author

Listed:
  • Huan Cai

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Xufeng Yuan

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Wei Xiong

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Huajun Zheng

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Yutao Xu

    (Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China)

  • Yongxiang Cai

    (Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China)

  • Jiumu Zhong

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract

Flexible interconnection transformation of a distribution network using all-control power electronics technology will help to overcome the technical bottleneck of distributed generation (DG) penetration and high-quality power supply in the traditional distribution network. However, the flexible interconnection form that uses back-to-back power electronic converters to replace tie switches has disadvantages such as high cost and large footprint, so its mass promotion and application are bound to be limited. Therefore, a new topology of flexible interconnected distribution network with embedded DC system (FDN+EDC) with a better economy is proposed. Firstly, the topology of FDN+EDC is introduced to improve the controllability level of the distribution network under high percentage DG penetration, and is compared with the conventional flexible interconnection method. Secondly, in order to realize the coordinated optimal economic operation of source, network and load in the FDN+EDC, a dynamic reconfiguration model of switches status and continuous adjustment of flexible interconnection device (FID) are proposed. Then, to achieve a fast and globally optimal solution of the model, a hierarchical coordinated optimization strategy is designed based on an improved particle swarm algorithm for the optimization of discrete and continuous variables. Finally, the validity of the algorithm is verified, and an 88-node FDN+EDC is constructed to verify the advantages of the proposed embedded DC flexible interconnection topology and realize the joint optimal dispatch of network-source-load.

Suggested Citation

  • Huan Cai & Xufeng Yuan & Wei Xiong & Huajun Zheng & Yutao Xu & Yongxiang Cai & Jiumu Zhong, 2022. "Flexible Interconnected Distribution Network with Embedded DC System and Its Dynamic Reconfiguration," Energies, MDPI, vol. 15(15), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5589-:d:877824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    2. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Benefits analysis of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 165(C), pages 36-47.
    3. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    4. Zhang, Lu & Shen, Chen & Chen, Ying & Huang, Shaowei & Tang, Wei, 2018. "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Applied Energy, Elsevier, vol. 231(C), pages 1122-1131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianxiang Ma & Ziqi Hu & Yan Xu & Haoran Dong, 2022. "Fault Location Based on Comprehensive Grey Correlation Degree Analysis for Flexible DC Distribution Network," Energies, MDPI, vol. 15(20), pages 1-16, October.
    2. Yan Xu & Ziqi Hu & Tianxiang Ma, 2022. "Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest," Energies, MDPI, vol. 15(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).
    2. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    3. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    4. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    5. Ricardo de Oliveira & Leonardo Willer de Oliveira & Edimar José de Oliveira, 2023. "Optimization Approach for Planning Soft Open Points in a MV-Distribution System to Maximize the Hosting Capacity," Energies, MDPI, vol. 16(3), pages 1-22, January.
    6. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    7. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    8. Xu Tang & Jingwen Zheng & Zhichun Yang & Xiangling He & Huaidong Min & Sihan Zhou & Kaipei Liu & Liang Qin, 2023. "A Fully Decentralized Optimal Dispatch Scheme for an AC–DC Hybrid Distribution Network Formed by Flexible Interconnected Distribution Station Areas," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    9. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    10. Xu Tang & Liang Qin & Zhichun Yang & Xiangling He & Huaidong Min & Sihan Zhou & Kaipei Liu, 2023. "Optimal Scheduling of AC–DC Hybrid Distribution Network Considering the Control Mode of a Converter Station," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    11. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    12. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    13. Azeredo, Lucas F.S. & Yahyaoui, Imene & Fiorotti, Rodrigo & Fardin, Jussara F. & Garcia-Pereira, Hilel & Rocha, Helder R.O., 2023. "Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids," Applied Energy, Elsevier, vol. 350(C).
    14. Husam A. Ramadan & Spyros Skarvelis-Kazakos, 2022. "DC Soft Open Points for Resilient and Reconfigurable DC Distribution Networks," Energies, MDPI, vol. 15(16), pages 1-23, August.
    15. Irina I. Picioroaga & Andrei M. Tudose & Dorian O. Sidea & Constantin Bulac, 2022. "Supply Restoration in Active Distribution Networks Based on Soft Open Points with Embedded DC Microgrids," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    16. Klyapovskiy, Sergey & You, Shi & Michiorri, Andrea & Kariniotakis, George & Bindner, Henrik W., 2019. "Incorporating flexibility options into distribution grid reinforcement planning: A techno-economic framework approach," Applied Energy, Elsevier, vol. 254(C).
    17. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    19. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    20. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5589-:d:877824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.