IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5582-d877652.html
   My bibliography  Save this article

A Data-Driven Reduced-Order Model for Estimating the Stimulated Reservoir Volume (SRV)

Author

Listed:
  • Ali Rezaei

    (National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
    FACT Inc., Santa Barbara, CA 93130, USA
    Current address: Schlumberger, Houston, TX 77042, USA.)

  • Fred Aminzadeh

    (National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
    FACT Inc., Santa Barbara, CA 93130, USA)

Abstract

The main goal of hydraulic fracturing stimulation in unconventional and tight reservoirs is to maximize hydrocarbon production by creating an efficient stimulated reservoir volume (SRV) around the horizontal wells. To zreach this goal, a physics-based model is typically used to design and optimize the hydraulic fracturing process before executing the job. However, two critical issues make this approach insufficient for achieving the mentioned goal. First, the physics-based models are based on several simplified assumptions and do not correctly represent the physics of unconventional reservoirs; hence, they often fail to match the observed SRVs in the field. Second, the success of the executed stimulation job is evaluated after it is completed in the field, leaving no room to modify some parameters such as proppant concentration in the middle of the job. To this end, this paper proposes data-driven and global sensitivity approaches to address these two issues. It introduces a novel workflow for estimating SRV in near real-time using some hydraulic fracturing parameters that can be inferred before or during the stimulation process. It also utilizes a robust global sensitivity framework known as the Sobol Method to rank the input parameters and create a reduced-order (mathematically simple) model for near real-time estimation of SRV (referred to as DSRV). The proposed framework in this paper has two main advantages and novelties. First, it is based on a pure data-based approach, with no simplified assumptions due to the use of a simulator for generating the training and test dataset, which is often the case in similar studies. Second, it treats SRV generation as a rock mechanics problem (rather than a reservoir engineering problem with fixed fracture lengths), accounting for changes in hydraulic fracture topology and SRV changes with time. A dataset from the Marcellus Shale Energy and Environment Laboratory (MSEEL) project is used. The model’s input parameters include stimulation variables of 58 stages of two wells. These parameters are stage number, step, pump rate and duration, proppant concentration and mass, and treating pressure. The model output consists of the corresponding microseismic (MS) cloud size at each step (i.e., time window) during the job. Based on the model, guidelines are provided to help operators design more efficient fracturing jobs for maximum recovery and to monitor the effectiveness of the hydraulic fracturing process. A few future improvements to this approach are also provided.

Suggested Citation

  • Ali Rezaei & Fred Aminzadeh, 2022. "A Data-Driven Reduced-Order Model for Estimating the Stimulated Reservoir Volume (SRV)," Energies, MDPI, vol. 15(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5582-:d:877652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zekun Guo & Hongjun Wang & Xiangwen Kong & Li Shen & Yuepeng Jia, 2021. "Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation," Energies, MDPI, vol. 14(17), pages 1-17, September.
    2. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    5. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    6. Xianmin Zhang & Jiawei Ren & Qihong Feng & Xianjun Wang & Wei Wang, 2021. "Prediction of Refracturing Timing of Horizontal Wells in Tight Oil Reservoirs Based on an Integrated Learning Algorithm," Energies, MDPI, vol. 14(20), pages 1-16, October.
    7. Ziwu Zhou & Ao Xia & Rui Guo & Lin Chen & Fengshuo Kong & Xiaoliang Zhao, 2023. "Seepage Model and Pressure Response Characteristics of Non-Orthogonal Multi-Fracture Vertical Wells with Superimposed Sand Body in Tight Gas Reservoirs," Energies, MDPI, vol. 16(21), pages 1-17, October.
    8. Du, Shuyi & Wang, Jiulong & Wang, Meizhu & Yang, Jiaosheng & Zhang, Cong & Zhao, Yang & Song, Hongqing, 2023. "A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5582-:d:877652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.