IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5334-d869478.html
   My bibliography  Save this article

Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements

Author

Listed:
  • Meng Zhao

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Anmin Wang

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Daiyong Cao

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Yingchun Wei

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Liqi Ding

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

Abstract

An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (L a ) of basic structure unit (BSU), and the stacking heights (L c ) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH 2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process.

Suggested Citation

  • Meng Zhao & Anmin Wang & Daiyong Cao & Yingchun Wei & Liqi Ding, 2022. "Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements," Energies, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5334-:d:869478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anmin Wang & Daiyong Cao & Yingchun Wei & Zhifei Liu, 2020. "Macromolecular Structure Controlling Micro Mechanical Properties of Vitrinite and Inertinite in Tectonically Deformed Coals—A Case Study in Fengfeng Coal Mine of Taihangshan Fault Zone (North China)," Energies, MDPI, vol. 13(24), pages 1-23, December.
    2. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feiran & Tan, Bo & Gao, Liyang & Huang, Jiliang & Guo, Meiyan & Wang, Haiyan & Fang, Xiyang & Fu, Shuhui & Li, Tianze, 2024. "Research on the mechanism of coal adsorption of CO2 hindering oxygen," Energy, Elsevier, vol. 296(C).
    2. Wang, Feiran & Tan, Bo & Zan, Xiaoyan & Huang, Jiliang & Fang, Xiyang & Fu, Shuhui & Wang, Haiyan & Li, Tianze & Qi, Qingjie, 2024. "Molecular simulation study of microstructural evolution during low-temperature oxidation of coal," Energy, Elsevier, vol. 290(C).
    3. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    4. He, Qing & Cheng, Chen & Zhang, Xinsha & Guo, Qinghua & Ding, Lu & Raheem, Abdul & Yu, Guangsuo, 2022. "Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis," Energy, Elsevier, vol. 244(PB).
    5. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    6. Huang, Jiliang & Tan, Bo & Gao, Liyang & Fan, Long & Shao, Zhuangzhuang & Wang, Haiyan & Qi, Qingjie, 2024. "Study on the evolution characteristics of molecular surface active sites of low-rank coal in low-temperature oxidation stage," Energy, Elsevier, vol. 294(C).
    7. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    8. Miao, Guodong & Li, Zenghua & Yang, Jingjing & Yang, Yongliang & Liu, Hao, 2023. "Microstructure evolution and higher-molecular-weight gas emission during the low temperature oxidation of coal," Energy, Elsevier, vol. 282(C).
    9. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    10. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    11. Zhang, Xiangliang & Jian, Shen & Lin, Baiquan & Zhu, Chuanjie, 2023. "Study on the influence of different-voltage plasma breakdowns on functional group structures in coal," Energy, Elsevier, vol. 284(C).
    12. Xi, Xian & Jiang, Shuguang & Shi, Quanlin & Yin, Chenchen, 2023. "Experimental investigation on the leakage plugging and fire extinguishment characteristics of industrial solid waste-based composite foam slurry materials," Energy, Elsevier, vol. 269(C).
    13. Zhao, Jingyu & Zhang, Yongli & Song, Jiajia & Guo, Tao & Deng, Jun & Shu, Chi-Min, 2023. "Oxygen distribution and gaseous products change of coal fire based upon the semi-enclosed experimental system," Energy, Elsevier, vol. 263(PB).
    14. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    15. Xu, Yong-liang & Huo, Xing-wang & Wang, Lan-yun & Gong, Xiang-jun & Lv, Ze-cheng & Zhao, Tian, 2024. "Spontaneous combustion properties and quantitative characterization of catastrophic temperature for pre-oxidized broken coal under stress," Energy, Elsevier, vol. 288(C).
    16. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    17. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).
    18. Antonov, D.V. & Dorokhov, V.V. & Nagibin, P.S. & Shlegel, N.E. & Strizhak, P.A., 2024. "Co-combustion of methane hydrate granules and liquid biofuel," Renewable Energy, Elsevier, vol. 221(C).
    19. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    20. Qian Liu & Baiquan Lin & Yan Zhou & Yuannan Zheng, 2021. "The evolution law of functional groups during the heating of coal in oxygen and oxygen‐free atmospheres," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 266-276, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5334-:d:869478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.