IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3720-d818904.html
   My bibliography  Save this article

ADRC Control System of PMLSM Based on Novel Non-Singular Terminal Sliding Mode Observer

Author

Listed:
  • Zheng Li

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Zihao Zhang

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Jinsong Wang

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Shaohua Wang

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Xuetong Chen

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Hexu Sun

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

Abstract

In an attempt to solve the problem of the many parameters of the traditional active disturbance rejection controller (ADRC) and to accurately estimate the mover position and speed required by a permanent magnet synchronous linear motor (PMLSM) system, an improved ADRC and a novel nonsingular fast terminal sliding mode observer (NFTSMO) are proposed. Firstly, the traditional first-order ADRC is simplified, the tracking differentiator (TD) module is removed, and the direct error is used to replace the nonlinear function in the extended state observer (ESO) and nonlinear state error feedback (NLSEF) module. Based on the traditional NFTSMO, the smooth back electromotive force (EMF) is obtained by adding the TD to reduce the phase delay caused by the low-pass filter in the traditional sliding mode observer (SMO), and the actuator position and speed information are modulated from the observed back EMF based on the principle of a phase-locked loop (PLL). Simulation and experiments show that this method not only simplifies the system structure of PMLSM but also optimizes many parameters in ADRC while retaining the original excellent performance. Compared with the traditional NFTSMO, the improved NFTSMO enhances the observation accuracy, reduces the chattering phenomenon of the system, and improves the robustness of the system.

Suggested Citation

  • Zheng Li & Zihao Zhang & Jinsong Wang & Shaohua Wang & Xuetong Chen & Hexu Sun, 2022. "ADRC Control System of PMLSM Based on Novel Non-Singular Terminal Sliding Mode Observer," Energies, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3720-:d:818904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengting Ye & Tingna Shi & Huimin Wang & Xinmin Li & Changliang Xia, 2019. "Sensorless-MTPA Control of Permanent Magnet Synchronous Motor Based on an Adaptive Sliding Mode Observer," Energies, MDPI, vol. 12(19), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiachun Lin & Yuteng Zhao & Pan Zhang & Junjie Wang & Hao Su, 2021. "Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators," Energies, MDPI, vol. 14(21), pages 1-17, November.
    2. Anton Dianov & Alecksey Anuchin, 2021. "Design of Constraints for Seeking Maximum Torque per Ampere Techniques in an Interior Permanent Magnet Synchronous Motor Control," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    3. Hyunjae Lee & Gunbok Lee & Gildong Kim & Jingeun Shon, 2022. "Variable Incremental Controller of Permanent-Magnet Synchronous Motor for Voltage-Based Flux-Weakening Control," Energies, MDPI, vol. 15(15), pages 1-15, August.
    4. Kan Wang & Zhong Wu & Zhongyi Chu, 2020. "DC-Link Current Control with Inverter Nonlinearity Compensation for Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(3), pages 1-16, January.
    5. Hyun-Jae Lee & Jin-Geun Shon, 2021. "Improved Voltage Flux-Weakening Strategy of Permanent Magnet Synchronous Motor in High-Speed Operation," Energies, MDPI, vol. 14(22), pages 1-15, November.
    6. Anton Dianov & Alecksey Anuchin, 2020. "Adaptive Maximum Torque per Ampere Control of Sensorless Permanent Magnet Motor Drives," Energies, MDPI, vol. 13(19), pages 1-13, September.
    7. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    8. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    9. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3720-:d:818904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.