IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2278-d538621.html
   My bibliography  Save this article

Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System

Author

Listed:
  • Byungju Park

    (PQ Tech Incorporation, Suwon 16690, Korea)

  • Jaehyeong Lee

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Hangkyu Yoo

    (PQ Tech Incorporation, Suwon 16690, Korea)

  • Gilsoo Jang

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

In this study, we mitigated the harmonic voltage in a power system that contained the roughing mill (RM) and finishing mill (FM) motor drives. AC/DC converter type RM drive is a non-linear, large-capacity varying load that adversely affects power quality, e.g., a flicker, voltage distortion, etc. The voltage drop can be compensated within a certain limit by using the proper capacity of a power capacitor bank. In addition, the voltage distortion can be controlled as per the guidelines of IEEE Std. 519 using the passive harmonic filter corresponding to the characteristic harmonics of the motor drive load. The passive harmonic filter can provide an economical solution by mitigating the harmonic distortion with a proper reactive power supply. However, at the planning level, attention should be paid to avoid system overvoltage that is caused by the leading power under light load conditions and also the problem of parallel resonance between the harmonic filter and the step-down transformer. In addition, when designing the filter reactor, the K-factor and peak voltage must be considered; the filter capacitor also requires a dielectric material that considers the harmonic peak voltage. The purpose of this study was to acquire a better understanding of the filter applications as well as verify the field measurement, analysis, and design of harmonic filters together with its performance.

Suggested Citation

  • Byungju Park & Jaehyeong Lee & Hangkyu Yoo & Gilsoo Jang, 2021. "Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System," Energies, MDPI, vol. 14(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2278-:d:538621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazdani-Asrami, Mohammad & Mirzaie, Mohammad & Shayegani Akmal, Amir Abbas, 2013. "No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis," Energy, Elsevier, vol. 50(C), pages 205-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miloud Rezkallah & Hussein Ibrahim & Félix Dubuisson & Ambrish Chandra & Sanjeev Singh & Bhim Singh & Mohamad Issa, 2021. "Hardware Implementation of Composite Control Strategy for Wind-PV-Battery Hybrid Off-Grid Power Generation System," Clean Technol., MDPI, vol. 3(4), pages 1-23, November.
    2. Yerbol Yerbayev & Ivan Artyukhov & Artem Zemtsov & Denis Artyukhov & Svetlana Molot & Dinara Japarova & Viktor Zakharov, 2022. "Negative Impact Mitigation on the Power Supply System of a Fans Group with Frequency-Variable Drive," Energies, MDPI, vol. 15(23), pages 1-21, November.
    3. Minh Ly Duc & Lukas Hlavaty & Petr Bilik & Radek Martinek, 2023. "Harmonic Mitigation Using Meta-Heuristic Optimization for Shunt Adaptive Power Filters: A Review," Energies, MDPI, vol. 16(10), pages 1-55, May.
    4. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    5. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    6. Corina Maria Diniș & Gabriel Nicolae Popa & Corina Daniela Cunțan & Angela Iagăr, 2024. "Aspects Regarding of Passive Filters Sustainability for Non-Linear Single-Phase Consumers," Sustainability, MDPI, vol. 16(7), pages 1-37, March.
    7. Gabriel Nicolae Popa, 2022. "Electric Power Quality through Analysis and Experiment," Energies, MDPI, vol. 15(21), pages 1-14, October.
    8. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    9. Łukasz Michalec & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Łukasz Jasiński & Vishnu Suresh, 2021. "Impact of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–Review and Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    10. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    2. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    3. Alvaro Carreno & Marcelo Perez & Carlos Baier & Alex Huang & Sanjay Rajendran & Mariusz Malinowski, 2021. "Configurations, Power Topologies and Applications of Hybrid Distribution Transformers," Energies, MDPI, vol. 14(5), pages 1-35, February.
    4. Guillermo Salinas & Juan A. Serrano-Vargas & Javier Muñoz-Antón & Pedro Alou, 2021. "Thermal Resistance Matrix Extraction from Finite-Element Analysis for High-Frequency Magnetic Components," Energies, MDPI, vol. 14(11), pages 1-14, May.
    5. Seyyedbarzegar, Seyyed Meysam & Mirzaie, Mohammad, 2015. "Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage," Energy, Elsevier, vol. 93(P1), pages 141-153.
    6. Dae Yong Um & Gwan Soo Park, 2021. "Comparison of Electromagnetic Characteristics of Single-Phase Induction Motor between Balanced and Unbalanced Operation under Different Loads," Energies, MDPI, vol. 14(4), pages 1-11, February.
    7. Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Daniela Proto, 2021. "Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power," Energies, MDPI, vol. 14(5), pages 1-16, March.
    8. Lopes, Rui Amaral & Magalhães, Pedro & Gouveia, João Pedro & Aelenei, Daniel & Lima, Celson & Martins, João, 2018. "A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging," Energy, Elsevier, vol. 157(C), pages 669-678.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2278-:d:538621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.