IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8269-d697852.html
   My bibliography  Save this article

Optimal Design Methodology on Compensation Parameters of Inductive Power Transfer Converter for Electric Vehicles

Author

Listed:
  • Cheol-Hee Jo

    (Department of Electrical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea)

  • Dong-Hee Kim

    (Department of Electrical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea)

Abstract

Compensation topologies of the inductive power transfer (IPT) converter for electric vehicles (EVs) have been researched in previous works. However, a methodology for designing a compensation topology based on the efficiency of the IPT converter has been barely discussed. This paper proposes an optimal design methodology for compensation parameters to achieve optimal efficiency of the IPT converter with LCC-S. The optimal output voltage is derived using the losses analysis of the IPT converter, and the IPT converter is designed for the optimal output voltage to achieve the optimal efficiency. Furthermore, the battery management (BM) converter on the receiving side is designed based on the output voltage of the IPT converter, the fluctuation range of the coupling coefficient, and the battery charging voltage. The validity of the proposed IPT converter design methodology is verified by designing different compensation parameters and BM converters. The power rating of the three design cases is 3.3 kW with the same magnetic pads satisfying the SAE J2954 WPT 1 class.

Suggested Citation

  • Cheol-Hee Jo & Dong-Hee Kim, 2021. "Optimal Design Methodology on Compensation Parameters of Inductive Power Transfer Converter for Electric Vehicles," Energies, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8269-:d:697852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yafei Chen & Hailong Zhang & Sung-Jun Park & Dong-Hee Kim, 2019. "A Comparative Study of S-S and LCCL-S Compensation Topologies in Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 12(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    3. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    4. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    5. Yiyan Zhao & Xuezhe Wei & Zhichao Luo & Meng Xiong & Haifeng Dai, 2022. "A Self-Tuning LCC/SP System for Electric Vehicle Wireless Charging against Large Self- and Mutual Inductance Variations," Energies, MDPI, vol. 15(11), pages 1-28, May.
    6. Eiman ElGhanam & Mohamed Hassan & Ahmed Osman, 2021. "Design of a High Power, LCC-Compensated, Dynamic, Wireless Electric Vehicle Charging System with Improved Misalignment Tolerance," Energies, MDPI, vol. 14(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8269-:d:697852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.