IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7988-d691318.html
   My bibliography  Save this article

Heat Transfer, Refrigeration and Heat Pumps

Author

Listed:
  • Moonis R. Ally

    (Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Brian Fricke

    (Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

Abstract

The Special Issue entitled “Heat Transfer, Refrigeration and heat Pumps” accepted papers covering a wide range of topics related to heat pumps, thermal energy storage, and low-Global Warming Potential (GWP) alternative refrigerants [...]

Suggested Citation

  • Moonis R. Ally & Brian Fricke, 2021. "Heat Transfer, Refrigeration and Heat Pumps," Energies, MDPI, vol. 14(23), pages 1-3, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7988-:d:691318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Allymehr & Geir Skaugen & Torsten Will & Ángel Álvarez Pardiñas & Trygve Magne Eikevik & Armin Hafner & Lena Schnabel, 2021. "Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers," Energies, MDPI, vol. 14(15), pages 1-15, July.
    2. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    3. Jian Sun & Jin Dong & Bo Shen & Wenhua Li, 2020. "Virtual Pressure Sensor for Electronic Expansion Valve Control in a Vapor Compression Refrigeration System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    4. Tianbo Lu & Yuqiang Li & Jianxin Zhang & Pingfan Ning & Pingjuan Niu, 2020. "Cooling and Mechanical Performance Analysis of a Trapezoidal Thermoelectric Cooler with Variable Cross-Section," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Joseph Rendall & Fernando Karg Bulnes & Kyle Gluesenkamp & Ahmad Abu-Heiba & William Worek & Kashif Nawaz, 2021. "A Flow Rate Dependent 1D Model for Thermally Stratified Hot-Water Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    2. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Sungmin Yoon & Youngwoong Choi & Jabeom Koo & Yejin Hong & Ryunhee Kim & Joowook Kim, 2020. "Virtual Sensors for Estimating District Heating Energy Consumption under Sensor Absences in a Residential Building," Energies, MDPI, vol. 13(22), pages 1-13, November.
    4. Yu Sun & Rijing Zhao & Siyuan Wu & Dong Huang, 2021. "Proposal, Robustness Analysis and Equivalent Implementation of Optimization Method for Row-by-Row Fin Distribution in Multi-Row Frosting Evaporator," Energies, MDPI, vol. 14(19), pages 1-17, September.
    5. Bo Shen & Moonis R. Ally, 2021. "Comparative Performance of Low Global Warming Potential (GWP) Refrigerants as Replacement for R-410A in a Regular 2-Speed Heat Pump for Sustainable Cooling," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    6. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Laura Fedele & Sergio Bobbo & Davide Menegazzo & Michele De Carli & Laura Carnieletto & Fabio Poletto & Andrea Tarabotti & Dimitris Mendrinos & Giulia Mezzasalma & Adriana Bernardi, 2023. "Energetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A and R134a in Ground-Source Heat Pumps," Energies, MDPI, vol. 16(9), pages 1-18, April.
    8. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7988-:d:691318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.