IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6319-d649348.html
   My bibliography  Save this article

Enhancing the Fault Ride-through Capability of a DFIG-WECS Using a High-Temperature Superconducting Coil

Author

Listed:
  • Mohamed I. Mosaad

    (Electrical and Electronic Engineering Technology Department, Yanbu Industrial College, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia)

  • Ahmed Abu-Siada

    (Discipline of Electrical and Computer Engineering, Curtin University, WA 6102, Australia)

  • Mohamed M. Ismaiel

    (Department of Electrical Engineering Discipline, Faculty of Engineering, Helwan University, Helwan 11795, Egypt)

  • Hani Albalawi

    (Department of Electrical Engineering, Faculty of Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia
    Renewable Energy and Energy Efficiency Center (REEEC), University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Ahmed Fahmy

    (Department of Electrical Engineering Discipline, Faculty of Engineering, Helwan University, Helwan 11795, Egypt)

Abstract

With the increase in doubly fed induction generator-based wind energy conversion systems (DFIG-WECS) worldwide, improving the fault ride-through (FRT) capability of the entire system has been given much attention. Enhancement of the FRT capability of a DFIG-WECS is conventionally realized by employing a flexible AC transmission system device with a proper control system. This paper presents a non-conventional method for the improvement of the FRT of DFIG-WECS, using a high-temperature superconducting coil interfaced with the DC-link of the rotor and stator side converters through a DC-chopper. A fractional-order proportional-integral (FOPI) controller is utilized to regulate the DC-chopper duty cycle in order to properly manage the power flow between the DC-link and the coil. Two optimization techniques, Harmony Search and Grey Wolf Optimizer, are employed to determine the optimum size of the superconducting coil along with the optimum parameters of the FOPI controller. The effectiveness of the two proposed optimization techniques is highlighted through comparing their performance with the well-known particle swarm optimization technique.

Suggested Citation

  • Mohamed I. Mosaad & Ahmed Abu-Siada & Mohamed M. Ismaiel & Hani Albalawi & Ahmed Fahmy, 2021. "Enhancing the Fault Ride-through Capability of a DFIG-WECS Using a High-Temperature Superconducting Coil," Energies, MDPI, vol. 14(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6319-:d:649348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elliot Snider & Nathan Dasenbrock-Gammon & Raymond McBride & Mathew Debessai & Hiranya Vindana & Kevin Vencatasamy & Keith V. Lawler & Ashkan Salamat & Ranga P. Dias, 2020. "RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, Nature, vol. 586(7829), pages 373-377, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šetrajčić, Jovan P. & Ilić, Dušan I. & Jaćimovski, Stevo K. & Vučenović, Siniša M., 2021. "Impact of surface conditions changes on changes in thermodynamic properties of quasi 2D crystals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    2. Marta Sośnicka & Volker Lüders, 2021. "Phase transitions in natural C-O-H-N-S fluid inclusions - implications for gas mixtures and the behavior of solid H2S at low temperatures," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    4. Dan Sun & Vasily S. Minkov & Shirin Mozaffari & Ying Sun & Yanming Ma & Stella Chariton & Vitali B. Prakapenka & Mikhail I. Eremets & Luis Balicas & Fedor F. Balakirev, 2021. "High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Anghel, Dragoş-Victor, 2021. "Multiple solutions for the equilibrium populations in BCS superconductors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    6. Daisuke Yamamoto & Takahiro Sakurai & Ryosuke Okuto & Susumu Okubo & Hitoshi Ohta & Hidekazu Tanaka & Yoshiya Uwatoko, 2021. "Continuous control of classical-quantum crossover by external high pressure in the coupled chain compound CsCuCl3," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6319-:d:649348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.