IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6310-d649174.html
   My bibliography  Save this article

Experimental Study on the Starting-Up and Heat Transfer Characteristics of a Pulsating Heat Pipe under Local Low-Frequency Vibrations

Author

Listed:
  • Jing Chen

    (Nanjing Vocational Institute of Transport Technology, Nanjing 211188, China)

  • Junbiao Dong

    (Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Ye Yao

    (Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Vibrations have attracted much attention as an effective method for enhancing heat transfer in pulsating heat pipes (PHPs). This study mainly investigates and explores the effects of local low-frequency vibrations on the starting-up and heat transfer characteristics of a PHP. The starting-up temperature and average temperatures along the evaporation section of the pulsating heat pipe were experimentally scrutinized, along with thermal performance, under local vibrations on evaporation, condensation and adiabatic sections, respectively. The following important conclusions can be derived by the experimental study: (1) The effect of vibrations at the evaporation section and at the adiabatic section during the starting-up time of the PHP were more significant than that at the condensation section; (2) vibrations at different positions could reduce the starting-up temperature of the PHP—the effect of the vibrations at the evaporation section was the best when heat power was lower, while the effect of vibrations on the adiabatic section was the best when heat power was higher; (3) vibrations at the evaporation and adiabatic sections could reduce the thermal resistance of the PHP, but vibrations at the condensation section had little effect on the thermal resistance of the PHP; (4) vibrations at the evaporation and adiabatic sections could effectively reduce the temperature at the evaporation section of the PHP, but the vibrations at the condensation section had no effect on the temperature at the evaporation section of the PHP. This paper shows that local low-frequency vibrations have positive effects on the heat transfer performances of PHPs.

Suggested Citation

  • Jing Chen & Junbiao Dong & Ye Yao, 2021. "Experimental Study on the Starting-Up and Heat Transfer Characteristics of a Pulsating Heat Pipe under Local Low-Frequency Vibrations," Energies, MDPI, vol. 14(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6310-:d:649174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ri-Guang Chi & Won-Sik Chung & Seok-Ho Rhi, 2018. "Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries," Energies, MDPI, vol. 11(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2021. "Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis," Energies, MDPI, vol. 14(22), pages 1-15, November.
    2. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2022. "Isothermal Performance of Heat Pipes: A Review," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ri-Guang Chi & Seok-Ho Rhi, 2019. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode," Energies, MDPI, vol. 12(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6310-:d:649174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.