IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6182-d644968.html
   My bibliography  Save this article

Vitrinite Equivalent Reflectance Estimation from Improved Maturity Indicator and Well Logs Based on Statistical Methods

Author

Listed:
  • Sebastian Waszkiewicz

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Paulina I. Krakowska-Madejska

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Estimation and correct determination of vitrinite equivalent reflectance in rock is crucial for the assessment of the source rock in both conventional and unconventional hydrocarbon deposits. These parameters can be determined in laboratories on rock samples. Laboratory measurements provide only point information. However, the use of well logs could overcome discontinuities in the data and provide parameters throughout a study interval. Attention has been paid to the estimation of TOC based on well logs. Vitrinite equivalent reflectance estimation is less well discussed and most papers reported cases with high TOC content in analyzed deposits. In this paper, the estimation of improved R o is presented using a calculated maturity indicator with well logs. As the organic matter content is not high, additional steps were required for the calculation. To improve the quality of the fit and to find similar intervals, the data were grouped using cluster and neural network analysis. The next step was to use the resistivity log to improve the obtained maturity indicator. Due to the changing properties of kerogen with the type and degree of thermal maturity, this approach turned out to be reliable. The use of resistivity significantly increased the correlation coefficient and reduced errors. The method was tested on two wells with different type and maturity of kerogen. The obtained results are satisfactory, which makes it possible to use the method even in formations with a low organic matter content.

Suggested Citation

  • Sebastian Waszkiewicz & Paulina I. Krakowska-Madejska, 2021. "Vitrinite Equivalent Reflectance Estimation from Improved Maturity Indicator and Well Logs Based on Statistical Methods," Energies, MDPI, vol. 14(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6182-:d:644968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
    2. Chuanbo Shen & Solomon Asante-Okyere & Yao Yevenyo Ziggah & Liang Wang & Xiangfeng Zhu, 2019. "Group Method of Data Handling (GMDH) Lithology Identification Based on Wavelet Analysis and Dimensionality Reduction as Well Log Data Pre-Processing Techniques," Energies, MDPI, vol. 12(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Kwilosz & Bogdan Filar & Mariusz Miziołek, 2022. "Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones," Energies, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
    2. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    3. Guangjuan Fan & Ting Dong & Yuejun Zhao & Yalou Zhou & Wentong Zhao & Jie Wang & Yilong Wang, 2023. "Establishment and Application of a Pattern for Identifying Sedimentary Microfacies of a Single Horizontal Well: An Example from the Eastern Transition Block in the Daqing Oilfield, Songliao Basin, Chi," Energies, MDPI, vol. 16(20), pages 1-19, October.
    4. Zhixue Sun & Baosheng Jiang & Xiangling Li & Jikang Li & Kang Xiao, 2020. "A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning," Energies, MDPI, vol. 13(15), pages 1-15, July.
    5. Cenk Temizel & Uchenna Odi & Karthik Balaji & Hakki Aydin & Javier E. Santos, 2022. "Classifying Facies in 3D Digital Rock Images Using Supervised and Unsupervised Approaches," Energies, MDPI, vol. 15(20), pages 1-15, October.
    6. Timur Merembayev & Darkhan Kurmangaliyev & Bakhbergen Bekbauov & Yerlan Amanbek, 2021. "A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan," Energies, MDPI, vol. 14(7), pages 1-16, March.
    7. Tadeusz Kwilosz & Bogdan Filar & Mariusz Miziołek, 2022. "Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones," Energies, MDPI, vol. 15(4), pages 1-14, February.
    8. Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
    9. Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
    10. Baraka Mathew Nkurlu & Chuanbo Shen & Solomon Asante-Okyere & Alvin K. Mulashani & Jacqueline Chungu & Liang Wang, 2020. "Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data," Energies, MDPI, vol. 13(3), pages 1-18, January.
    11. Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
    12. Stanisław Baudzis & Joanna Karłowska-Pik & Edyta Puskarczyk, 2021. "Electrofacies as a Tool for the Prediction of True Resistivity Using Advanced Statistical Methods—Case Study," Energies, MDPI, vol. 14(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6182-:d:644968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.