IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2831-d554858.html
   My bibliography  Save this article

A Hybrid Jaya–Powell’s Pattern Search Algorithm for Multi-Objective Optimal Power Flow Incorporating Distributed Generation

Author

Listed:
  • Saket Gupta

    (Electrical Engineering Department, Delhi Technological University, Delhi 110042, India)

  • Narendra Kumar

    (Electrical Engineering Department, Delhi Technological University, Delhi 110042, India)

  • Laxmi Srivastava

    (Electrical Engineering Department, Madhav Institute of Technology & Science, Gwalior 474005, India)

  • Hasmat Malik

    (BEARS, CREATE Tower, NUS Campus, Singapore 138602, Singapore)

  • Alberto Pliego Marugán

    (Department of Quantitative Methods, CUNEF University, 28040 Madrid, Spain)

  • Fausto Pedro García Márquez

    (Ingenium Research Group, Universidad Castilla-La Mancha, 13071 Ciudad Real, Spain)

Abstract

A new hybrid meta-heuristic approach Jaya–PPS, which is the combination of the Jaya algorithm and Powell’s Pattern Search method, is proposed in this paper to solve the optimal power flow (OPF) problem for minimization of fuel cost, emission and real power losses and total voltage deviation simultaneously. The recently developed Jaya algorithm has been applied for the exploration of search space, while the excellent local search capability of the PPS (Powell’s Pattern Search) method has been used for exploitation purposes. Integration of the local search procedure into the classical Jaya algorithm was carried out in three different ways, which resulted in three versions, namely, J-PPS1, J-PPS2 and J-PPS3. These three versions of the proposed hybrid Jaya–PPS approach were developed and implemented to solve the OPF problem in the standard IEEE 30-bus and IEEE 57-bus systems integrated with distributed generating units optimizing four objective functions simultaneously and IEEE 118-bus system for fuel cost minimization. The obtained results of the three versions are compared to the Dragonfly Algorithm, Grey Wolf Optimization Algorithm, Jaya Algorithm and already published results using other methods. A comparison of the results clearly demonstrates the superiority of the proposed J–PPS3 algorithm over different algorithms/versions and the reported methods.

Suggested Citation

  • Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Alberto Pliego Marugán & Fausto Pedro García Márquez, 2021. "A Hybrid Jaya–Powell’s Pattern Search Algorithm for Multi-Objective Optimal Power Flow Incorporating Distributed Generation," Energies, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2831-:d:554858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    3. Quadri, Imran Ahmad & Bhowmick, S. & Joshi, D., 2018. "A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems," Applied Energy, Elsevier, vol. 211(C), pages 1245-1260.
    4. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    5. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    6. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    7. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    2. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    3. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    4. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    5. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    6. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    7. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    8. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    9. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    10. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    11. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    12. Yuan, Xiaohui & Zhang, Binqiao & Wang, Pengtao & Liang, Ji & Yuan, Yanbin & Huang, Yuehua & Lei, Xiaohui, 2017. "Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm," Energy, Elsevier, vol. 122(C), pages 70-82.
    13. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    14. Mahmoud A. Ali & Salah Kamel & Mohamed H. Hassan & Emad M. Ahmed & Mohana Alanazi, 2022. "Optimal Power Flow Solution of Power Systems with Renewable Energy Sources Using White Sharks Algorithm," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    15. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Hasanien, Hany M. & Ginidi, Ahmed R., 2022. "An improved heap optimization algorithm for efficient energy management based optimal power flow model," Energy, Elsevier, vol. 250(C).
    16. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    17. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    18. Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.
    19. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    20. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2831-:d:554858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.