IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p63-d467921.html
   My bibliography  Save this article

Power System Impedance Estimation Using a Fast Voltage and Current Changes Measurements

Author

Listed:
  • Martin Kanálik

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Anastázia Margitová

    (Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Ľubomír Beňa

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Andrea Kanáliková

    (Department of Applied Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Institute of Technology, Economics and Management in Construction, Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovakia)

Abstract

Equivalent power system impedance is an important electrical quantity from many points of view. Areas in which this parameter plays an important role include, in particular: Voltage stability analysis, power quality, or fault condition analysis. Power system impedance estimation in real operation conditions can be performed by one of the non-invasive methods described by different authors. This paper aims to investigate and compare seven different methods for power system impedance estimation based on voltage and current variations measurement. After a brief description of selected methods, these methods were applied for power system impedance estimation in the case of two simple simulation tests and then in the case of three real measured data. Voltage and current changes used for power system impedance estimation in real conditions were measured in high voltage (HV) and medium voltage (MV) substations feeding steel mill with the electric arc furnace (EAF) operation. As the results presented in this paper have shown, not all of the methods analyzed are suitable for determining the power system impedance based on the fast step changes of voltage and current that occur, for example, during an EAF operation. Indeed, some of the tested methods were originally designed to determine the power system impedance from changes in voltages and currents recorded at steady state.

Suggested Citation

  • Martin Kanálik & Anastázia Margitová & Ľubomír Beňa & Andrea Kanáliková, 2020. "Power System Impedance Estimation Using a Fast Voltage and Current Changes Measurements," Energies, MDPI, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:63-:d:467921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/63/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/63/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiankui Sun & Zhimin Li & Shuang Rong & Jian Lu & Weixing Li, 2017. "Effect of Load Change on the Thevenin Equivalent Impedance of Power System," Energies, MDPI, vol. 10(3), pages 1-6, March.
    2. Nabil Mohammed & Mihai Ciobotaru & Graham Town, 2019. "Online Parametric Estimation of Grid Impedance Under Unbalanced Grid Conditions," Energies, MDPI, vol. 12(24), pages 1-21, December.
    3. Hun-Chul Seo, 2020. "New Protection Scheme in Loop Distribution System with Distributed Generation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anan Zhang & Huang Huang & Wei Yang & Hongwei Li, 2019. "Multivariable Regression Equivalent Model of Interconnected Active Distribution Networks Based on Boundary Measurement," Energies, MDPI, vol. 12(12), pages 1-17, June.
    2. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    3. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    4. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    5. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    6. Azam Bagheri & Massimo Bongiorno & Irene Y. H. Gu & Jan R. Svensson, 2021. "Estimation of Frequency-Dependent Impedances in Power Grids by Deep LSTM Autoencoder and Random Forest," Energies, MDPI, vol. 14(13), pages 1-14, June.
    7. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    8. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    9. Heng-Yi Su & Tzu-Yi Liu, 2017. "A PMU-Based Method for Smart Transmission Grid Voltage Security Visualization and Monitoring," Energies, MDPI, vol. 10(8), pages 1-16, July.
    10. Heng-Yi Su & Tzu-Yi Liu, 2017. "GECM-Based Voltage Stability Assessment Using Wide-Area Synchrophasors," Energies, MDPI, vol. 10(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:63-:d:467921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.