IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5799-d440591.html
   My bibliography  Save this article

CFD Analyses of Textured Surfaces for Tribological Improvements in Hydraulic Pumps

Author

Listed:
  • Paolo Casoli

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Fabio Scolari

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Massimo Rundo

    (Department of Energy, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Antonio Lettini

    (Casappa Ltd., Via Balestrieri 1, Lemignano di Collecchio, 43044 Parma, Italy)

  • Manuel Rigosi

    (Casappa Ltd., Via Balestrieri 1, Lemignano di Collecchio, 43044 Parma, Italy)

Abstract

In any hydraulic machine there are lubricated couplings that could become critical beyond certain operating conditions. This paper presents the simulation results concerning textured surfaces with the aim of improving the performance of lubricated couplings in relative motion. The texturing design requires much care to obtain good improvements, and it is essential to analyze both the geometric features of the dimples and the characteristics of the coupled surfaces, like the sliding velocity and gap height. For this purpose, several CFD simulations have been performed to study the behavior of the fluid bounded in the coupling, considering dimples with different shapes, size, and spatial distribution. The simulations consider the onset of gaseous cavitation to evaluate the influence of this phenomenon on the pressure distribution generated by the textured surface. The analyses have pointed out that it is critical to correctly predict the behavior of the textured surface in the presence of local cavitation, in fact, when cavitation occurs, the characteristic time of the transient in which the phase of the fluid change is very rapid and it is comparable to the time taken by the fluid to move from one dimple to the next.

Suggested Citation

  • Paolo Casoli & Fabio Scolari & Massimo Rundo & Antonio Lettini & Manuel Rigosi, 2020. "CFD Analyses of Textured Surfaces for Tribological Improvements in Hydraulic Pumps," Energies, MDPI, vol. 13(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5799-:d:440591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Rundo & Giorgio Altare & Paolo Casoli, 2019. "Simulation of the Filling Capability in Vane Pumps," Energies, MDPI, vol. 12(2), pages 1-18, January.
    2. Paolo Casoli & Andrea Bedotti & Federico Campanini & Mirko Pastori, 2018. "A Methodology Based on Cyclostationary Analysis for Fault Detection of Hydraulic Axial Piston Pumps," Energies, MDPI, vol. 11(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Eskin, 2022. "On CFD-Assisted Research and Design in Engineering," Energies, MDPI, vol. 15(23), pages 1-3, December.
    2. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Paolo Casoli & Fabio Scolari & Massimo Rundo, 2021. "Modelling and Validation of Cavitating Orifice Flow in Hydraulic Systems," Sustainability, MDPI, vol. 13(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Casoli & Mirko Pastori & Fabio Scolari & Massimo Rundo, 2019. "A Vibration Signal-Based Method for Fault Identification and Classification in Hydraulic Axial Piston Pumps," Energies, MDPI, vol. 12(5), pages 1-18, March.
    2. Massimo Rundo & Giorgio Altare & Paolo Casoli, 2019. "Simulation of the Filling Capability in Vane Pumps," Energies, MDPI, vol. 12(2), pages 1-18, January.
    3. Thomas Lobsinger & Timm Hieronymus & Gunther Brenner, 2020. "A CFD Investigation of a 2D Balanced Vane Pump Focusing on Leakage Flows and Multiphase Flow Characteristics," Energies, MDPI, vol. 13(13), pages 1-24, June.
    4. Thomas Lobsinger & Timm Hieronymus & Hubert Schwarze & Gunther Brenner, 2021. "A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Paolo Casoli & Carlo Maria Vescovini & Fabio Scolari & Massimo Rundo, 2022. "Theoretical Analysis of Active Flow Ripple Control in Positive Displacement Pumps," Energies, MDPI, vol. 15(13), pages 1-22, June.
    6. Alessandro Corvaglia & Massimo Rundo & Paolo Casoli & Antonio Lettini, 2021. "Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations," Energies, MDPI, vol. 14(2), pages 1-16, January.
    7. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2022. "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5799-:d:440591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.