IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5717-d438697.html
   My bibliography  Save this article

Voltage Stability Analysis in Medium-Voltage Distribution Networks Using a Second-Order Cone Approximation

Author

Listed:
  • Oscar Danilo Montoya

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C 11021, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Walter Gil-González

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Campus Robledo, Medellín 050036, Colombia)

  • Andrés Arias-Londoño

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Campus Robledo, Medellín 050036, Colombia)

  • Arul Rajagopalan

    (School of Electrical Engineering, Vellore Institute of Technology, Chennai 632014, India)

  • Jesus C. Hernández

    (Department of Electrical Engineering, Campus Lagunillas s/n, University of Jaén, Edificio A3, 23071 Jaén, Spain)

Abstract

This paper addresses the voltage stability margin calculation in medium-voltage distribution networks in the context of exact mathematical modeling. This margin calculation is performed with a second-order cone (SOCP) reformulation of the classical nonlinear non-convex optimal power flow problems. The main idea around the SOCP approximation is to guarantee the global optimal solution via convex optimization, considering as the objective function the λ -coefficient associated with the maximum possible increment of the load consumption at all the nodes. Different simulation cases are considered in one test feeder, described as follows: (i) the distribution network without penetration of distributed generation; (ii) the distribution network with penetration of distributed generation; and (iii) the distribution grid with capacitive compensation. Numerical results in the test system demonstrated the effectiveness of the proposed SOCP approximation to determine the λ -coefficient. In addition, the proposed approximation is compared with nonlinear tools available in the literature. All the simulations are carried out in the MATLAB software with the CVX package and the Gurobi solver.

Suggested Citation

  • Oscar Danilo Montoya & Walter Gil-González & Andrés Arias-Londoño & Arul Rajagopalan & Jesus C. Hernández, 2020. "Voltage Stability Analysis in Medium-Voltage Distribution Networks Using a Second-Order Cone Approximation," Energies, MDPI, vol. 13(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5717-:d:438697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaiah Adebayo & Yanxia Sun, 2017. "New Performance Indices for Voltage Stability Analysis in a Power System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    2. Arun Onlam & Daranpob Yodphet & Rongrit Chatthaworn & Chayada Surawanitkun & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping," Energies, MDPI, vol. 12(3), pages 1-12, February.
    3. Majid Ghaffarianfar & Amin Hajizadeh, 2018. "Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units," Energies, MDPI, vol. 11(8), pages 1-13, July.
    4. Yuwei Chen & Ji Xiang & Yanjun Li, 2018. "SOCP Relaxations of Optimal Power Flow Problem Considering Current Margins in Radial Networks," Energies, MDPI, vol. 11(11), pages 1-17, November.
    5. Oscar Danilo Montoya & Walter Gil-González & Luis Grisales-Noreña & César Orozco-Henao & Federico Serra, 2019. "Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models," Energies, MDPI, vol. 12(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
    3. Alena Vagaská & Miroslav Gombár & Ľuboslav Straka, 2022. "Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice," Energies, MDPI, vol. 15(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdy M. Sultan & Ahmed A. Zaki Diab & Oleg N. Kuznetsov & Ziad M. Ali & Omer Abdalla, 2019. "Evaluation of the Impact of High Penetration Levels of PV Power Plants on the Capacity, Frequency and Voltage Stability of Egypt’s Unified Grid," Energies, MDPI, vol. 12(3), pages 1-22, February.
    2. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    3. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    4. S. Angalaeswari & P. Sanjeevikumar & K. Jamuna & Zbigniew Leonowicz, 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    5. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    6. Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2020. "Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    8. Luis Gerardo González & Rommel Chacon & Bernardo Delgado & Dario Benavides & Juan Espinoza, 2020. "Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks," Energies, MDPI, vol. 13(15), pages 1-15, July.
    9. Nien-Che Yang & Yan-Lin Zeng & Tsai-Hsiang Chen, 2021. "Assessment of Voltage Imbalance Improvement and Power Loss Reduction in Residential Distribution Systems in Taiwan," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
    10. Khairul Eahsun Fahim & Liyanage C. De Silva & Fayaz Hussain & Hayati Yassin, 2023. "A State-of-the-Art Review on Optimization Methods and Techniques for Economic Load Dispatch with Photovoltaic Systems: Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-29, August.
    11. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2020. "Optimal Placement and Sizing of DGs in Distribution Networks Using MLPSO Algorithm," Energies, MDPI, vol. 13(23), pages 1-25, November.
    12. Hyeon Woo & Yongju Son & Jintae Cho & Sungyun Choi, 2022. "Stochastic Second-Order Conic Programming for Optimal Sizing of Distributed Generator Units and Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    13. Ayşe Aybike Şeker & Tuba Gözel & Mehmet Hakan Hocaoğlu, 2021. "BIBC Matrix Modification for Network Topology Changes: Reconfiguration Problem Implementation," Energies, MDPI, vol. 14(10), pages 1-16, May.
    14. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    15. Oscar Danilo Montoya & Jorge Alexander Alarcon-Villamil & Jesus C. Hernández, 2021. "Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses," Energies, MDPI, vol. 14(15), pages 1-22, July.
    16. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    17. Oscar Danilo Montoya & Farhad Zishan & Diego Armando Giral-Ramírez, 2022. "Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    18. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    19. Luis Fernando Grisales-Noreña & Brandon Cortés-Caicedo & Gerardo Alcalá & Oscar Danilo Montoya, 2023. "Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    20. Panyawoot Boonluk & Sirote Khunkitti & Pradit Fuangfoo & Apirat Siritaratiwat, 2021. "Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand," Energies, MDPI, vol. 14(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5717-:d:438697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.