IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5157-d423359.html
   My bibliography  Save this article

Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link

Author

Listed:
  • Giuseppina Monti

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
    These authors contributed equally to this work.)

  • Mauro Mongiardo

    (Department of Engineering, University of Perugia, 06123 Perugia, Italy
    These authors contributed equally to this work.)

  • Ben Minnaert

    (Department of Industrial Science and Technology, Odisee University College of Applied Sciences, 9000 Ghent, Belgium)

  • Alessandra Costanzo

    (Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, 40126 Bologna, Italy)

  • Luciano Tarricone

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

This paper analyzes a resonant inductive wireless power transfer link using a single transmitter and multiple receivers. The link is described as an ( N + 1 ) –port network and the problem of efficiency maximization is formulated as a generalized eigenvalue problem. It is shown that the desired solution can be derived through simple algebraic operations on the impedance matrix of the link. The analytical expressions of the loads and the generator impedances that maximize the efficiency are derived and discussed. It is demonstrated that the maximum realizable efficiency of the link does not depend on the coupling among the receivers that can be always compensated. Circuital simulation results validating the presented theory are reported and discussed.

Suggested Citation

  • Giuseppina Monti & Mauro Mongiardo & Ben Minnaert & Alessandra Costanzo & Luciano Tarricone, 2020. "Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link," Energies, MDPI, vol. 13(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5157-:d:423359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud Wagih & Abiodun Komolafe & Bahareh Zaghari, 2020. "Separation-Independent Wearable 6.78 MHz Near-Field Radiative Wireless Power Transfer using Electrically Small Embroidered Textile Coils," Energies, MDPI, vol. 13(3), pages 1-14, January.
    2. Chengxin Luo & Dongyuan Qiu & Manhao Lin & Bo Zhang, 2020. "Circuit Model and Analysis of Multi-Load Wireless Power Transfer System Based on Parity-Time Symmetry," Energies, MDPI, vol. 13(12), pages 1-18, June.
    3. Weikun Cai & Dianguang Ma & Houjun Tang & Xiaoyang Lai & Xin Liu & Longzhao Sun, 2018. "Highly Efficient Target Power Control for Two-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 11(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Fiori & Jing Wang, 2023. "External Identification of a Reciprocal Lossy Multiport Circuit under Measurement Uncertainties by Riemannian Gradient Descent," Energies, MDPI, vol. 16(6), pages 1-31, March.
    2. Giuseppina Monti & Mauro Mongiardo & Ben Minnaert & Alessandra Costanzo & Luciano Tarricone, 2021. "Multiple Input Multiple Output Resonant Inductive WPT Link: Optimal Terminations for Efficiency Maximization," Energies, MDPI, vol. 14(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeideh Pahlavan & Mostafa Shooshtari & Shahin Jafarabadi Ashtiani, 2022. "Star-Shaped Coils in the Transmitter Array for Receiver Rotation Tolerance in Free-Moving Wireless Power Transfer Applications," Energies, MDPI, vol. 15(22), pages 1-13, November.
    2. Aqeel Mahmood Jawad & Rosdiadee Nordin & Haider Mahmood Jawad & Sadik Kamel Gharghan & Asma’ Abu-Samah & Mahmood Jawad Abu-Alshaeer & Nor Fadzilah Abdullah, 2022. "Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    3. Weikun Cai & Dianguang Ma & Xiaoyang Lai & Khurram Hashmi & Houjun Tang & Junzhong Xu, 2020. "Time-Sharing Control Strategy for Multiple-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 13(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5157-:d:423359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.