IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2194-d536074.html
   My bibliography  Save this article

Multiple Input Multiple Output Resonant Inductive WPT Link: Optimal Terminations for Efficiency Maximization

Author

Listed:
  • Giuseppina Monti

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
    These authors contributed equally to this work.)

  • Mauro Mongiardo

    (Department of Engineering, University of Perugia, 06123 Perugia, Italy
    These authors contributed equally to this work.)

  • Ben Minnaert

    (College of Applied Sciences, Odisee University, 9000 Ghent, Belgium)

  • Alessandra Costanzo

    (Department of Electrical, University of Bologna, 40126 Bologna, Italy)

  • Luciano Tarricone

    (Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

In this paper a general-purpose procedure for optimizing a resonant inductive wireless power transfer link adopting a multiple-input-multiple-output (MIMO) configuration is presented. The wireless link is described in a general–purpose way as a multi-port electrical network that can be the result of either analytical calculations, full–wave simulations, or measurements. An eigenvalue problem is then derived to determine the link optimal impedance terminations for efficiency maximization. A step-by-step procedure is proposed to solve the eigenvalue problem using a computer algebra system, it provides the configuration of the link, optimal sources, and loads for maximizing the efficiency. The main advantage of the proposed approach is that it is general: it is valid for any strictly–passive multi–port network and is therefore applicable to any wireless power transfer (WPT) link. To validate the presented theory, an example of application is illustrated for a link using three transmitters and two receivers whose impedance matrix was derived from full-wave simulations.

Suggested Citation

  • Giuseppina Monti & Mauro Mongiardo & Ben Minnaert & Alessandra Costanzo & Luciano Tarricone, 2021. "Multiple Input Multiple Output Resonant Inductive WPT Link: Optimal Terminations for Efficiency Maximization," Energies, MDPI, vol. 14(8), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2194-:d:536074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Li & Kai Song & Zhenjie Li & Jinhai Jiang & Chunbo Zhu, 2018. "Optimal Efficiency Tracking Control Scheme Based on Power Stabilization for a Wireless Power Transfer System with Multiple Receivers," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Giuseppina Monti & Mauro Mongiardo & Ben Minnaert & Alessandra Costanzo & Luciano Tarricone, 2020. "Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link," Energies, MDPI, vol. 13(19), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhipeng Guan & Bo Zhang & Dongyuan Qiu, 2019. "Influence of Asymmetric Coil Parameters on the Output Power Characteristics of Wireless Power Transfer Systems and Their Applications," Energies, MDPI, vol. 12(7), pages 1-19, March.
    2. Simone Fiori & Jing Wang, 2023. "External Identification of a Reciprocal Lossy Multiport Circuit under Measurement Uncertainties by Riemannian Gradient Descent," Energies, MDPI, vol. 16(6), pages 1-31, March.
    3. Jacek Maciej Stankiewicz & Agnieszka Choroszucho & Adam Steckiewicz, 2021. "Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2194-:d:536074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.