IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1339-d220835.html
   My bibliography  Save this article

Implementation of Optimal Scheduling Algorithm for Multi-Functional Battery Energy Storage System

Author

Listed:
  • Hee-Jun Cha

    (Department of Electrical Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon 402-751, Korea)

  • Sung-Eun Lee

    (Korea Electric Power Research Institute (KEPRI), Korea Electric Power Company (KEPCO), 105 Munji-Ro, Yuseong-gu, Daejeon 34056, Korea)

  • Dongjun Won

    (Department of Electrical Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon 402-751, Korea)

Abstract

Energy storage system (ESS) can play a positive role in the power system due to its ability to store, charge and discharge energy. Additionally, it can be installed in various capacities, so it can be used in the transmission and distribution system and even at home. In this paper, the proposed algorithm for economic optimal scheduling of ESS linked to transmission systems in the Korean electricity market is proposed and incorporated into the BESS (battery energy storage system) demonstration test center. The proposed algorithm considers the energy arbitrage operation through SMP (system marginal price) and operation considering the REC (renewable energy certification) weight of the connected wind farm and frequency regulation service. In addition, the proposed algorithm was developed so that the SOC (state-of-charge) of the ESS could be separated into two virtual SOCs to participate in different markets and generate revenue. The proposed algorithm was simulated and verified through Matlab and loaded into the demonstration system using the Matlab “Runtime” function.

Suggested Citation

  • Hee-Jun Cha & Sung-Eun Lee & Dongjun Won, 2019. "Implementation of Optimal Scheduling Algorithm for Multi-Functional Battery Energy Storage System," Energies, MDPI, vol. 12(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1339-:d:220835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douglas Halamay & Michael Antonishen & Kelcey Lajoie & Arne Bostrom & Ted K. A. Brekken, 2014. "Improving Wind Farm Dispatchability Using Model Predictive Control for Optimal Operation of Grid-Scale Energy Storage," Energies, MDPI, vol. 7(9), pages 1-16, September.
    2. Sung-Min Cho & Sang-Yun Yun, 2017. "Optimal Power Assignment of Energy Storage Systems to Improve the Energy Storage Efficiency for Frequency Regulation," Energies, MDPI, vol. 10(12), pages 1-13, December.
    3. Wonchang Hur & Yongma Moon & Kwangsup Shin & Wooje Kim & Suchul Nam & Kijun Park, 2015. "Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea," Energies, MDPI, vol. 8(6), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alba Leduchowicz-Municio & Miguel Edgar Morales Udaeta & André Luiz Veiga Gimenes & Tuo Ji & Victor Baiochi Riboldi, 2022. "Socio-Environmental Evaluation of MV Commercial Time-Shift Application Based on Battery Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-21, July.
    2. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    3. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    2. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    3. Ying-Yi Hong & Yong-Zhen Lai & Yung-Ruei Chang & Yih-Der Lee & Chia-Hui Lin, 2018. "Optimizing Energy Storage Capacity in Islanded Microgrids Using Immunity-Based Multiobjective Planning," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Feras Alasali & Stephen Haben & Victor Becerra & William Holderbaum, 2017. "Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-18, October.
    5. Kim, Wook-Won & Shin, Je-Seok & Kim, Sung-Yul & Kim, Jin-O., 2017. "Operation scheduling for an energy storage system considering reliability and aging," Energy, Elsevier, vol. 141(C), pages 389-397.
    6. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Sanli Zhu & Jiping Lu & Zheng Li & Junyi Lin, 2017. "Evaluation Method for the Firm Power Escalation of a Wind-Storage Hybrid Power System," Energies, MDPI, vol. 10(10), pages 1-12, October.
    8. Feras Alasali & Stephen Haben & Husam Foudeh & William Holderbaum, 2020. "A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads," Energies, MDPI, vol. 13(10), pages 1-19, May.
    9. Zhe Jiang & Xueshan Han & Zhimin Li & Wenbo Li & Mengxia Wang & Mingqiang Wang, 2016. "Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station," Energies, MDPI, vol. 9(11), pages 1-17, October.
    10. Minhan Yoon & Jaehyeong Lee & Sungyoon Song & Yeontae Yoo & Gilsoo Jang & Seungmin Jung & Sungchul Hwang, 2019. "Utilization of Energy Storage System for Frequency Regulation in Large-Scale Transmission System," Energies, MDPI, vol. 12(20), pages 1-13, October.
    11. Nam-Du Nguyen-Hoang & Wooyoung Shin & Choongman Lee & In-Young Chung & Dongha Kim & Young-Ha Hwang & Juyoung Youn & Jwayoung Maeng & Minhan Yoon & Kyeon Hur & Jae Woong Shim, 2022. "Operation Method of Energy Storage System Replacing Governor for Frequency Regulation of Synchronous Generator without Reserve," Energies, MDPI, vol. 15(3), pages 1-16, January.
    12. Hyung-Seung Kim & Junho Hong & In-Sun Choi, 2021. "Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation," Energies, MDPI, vol. 14(9), pages 1-19, May.
    13. Junhui Li & Yunbao Ma & Gang Mu & Xichao Feng & Gangui Yan & Gan Guo & Tianyang Zhang, 2018. "Optimal Configuration of Energy Storage System Coordinating Wind Turbine to Participate Power System Primary Frequency Regulation," Energies, MDPI, vol. 11(6), pages 1-16, May.
    14. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).
    15. Michael Schimpe & Christian Piesch & Holger C. Hesse & Julian Paß & Stefan Ritter & Andreas Jossen, 2018. "Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    16. Fei Teng & Danny Pudjianto & Marko Aunedi & Goran Strbac, 2018. "Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe," Energies, MDPI, vol. 11(1), pages 1-19, January.
    17. Sung-Min Cho & Sang-Yun Yun, 2017. "Optimal Power Assignment of Energy Storage Systems to Improve the Energy Storage Efficiency for Frequency Regulation," Energies, MDPI, vol. 10(12), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1339-:d:220835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.