IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1323-d220532.html
   My bibliography  Save this article

Aerial Surveillance with Low-Altitude Long-Endurance Tethered Multirotor UAVs Using Photovoltaic Power Management System

Author

Listed:
  • Sunghun Jung

    (Department of Electric Vehicle Engineering, Dongshin University, Jeollanam-do 58245, Korea)

  • Yonghyeon Jo

    (Department of Energy Mechanical Facility, Dongshin University, Jeollanam-do 58245, Korea)

  • Young-Joon Kim

    (Department of Electronic Engineering, Gachon University, Gyeonggi-do 13120, Korea)

Abstract

For a continuous surveillance mission using a swarm of multiple tethered low-altitude long-endurance (LALE) multirotor-type unmanned aerial vehicles (UAVs), we developed a 500 W class photovoltaic power management system (PPMS) which monitors voltage and current flows of photovoltaic (PV) panels, battery pack, and UAV and controls power flows to support UAV flight operation. In contract to a fixed-wing UAV, a tethered multirotor UAV can generate continuously varying closed-circuit television (CCTV) like ground map images by stitching incoming images though the operation range is limited. With an indoor flight experiment, we demonstrated the usefulness of the PPMS and proved operation integrity. According to the results, a total of six multirotor UAVs were required to continuously perform a surveillance mission for 5 h 46 min from 11:04 to 16:50.

Suggested Citation

  • Sunghun Jung & Yonghyeon Jo & Young-Joon Kim, 2019. "Aerial Surveillance with Low-Altitude Long-Endurance Tethered Multirotor UAVs Using Photovoltaic Power Management System," Energies, MDPI, vol. 12(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1323-:d:220532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunghun Jung & Heon Jeong, 2017. "Extended Kalman Filter-Based State of Charge and State of Power Estimation Algorithm for Unmanned Aerial Vehicle Li-Po Battery Packs," Energies, MDPI, vol. 10(8), pages 1-13, August.
    2. Bojan Kranjec & Sasa Sladic & Wojciech Giernacki & Neven Bulic, 2018. "PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study," Energies, MDPI, vol. 11(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankita Mohapatra & Timothy Trinh, 2022. "Early Wildfire Detection Technologies in Practice—A Review," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    2. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    3. Hailong Huang & Andrey V. Savkin & Wei Ni, 2020. "Energy-Efficient 3D Navigation of a Solar-Powered UAV for Secure Communication in the Presence of Eavesdroppers and No-Fly Zones," Energies, MDPI, vol. 13(6), pages 1-12, March.
    4. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    2. Yongjie Zhai & Hailong Zhao & Meng Zhao & Songming Jiao, 2018. "Design of Electric Patrol UAVs Based on a Dual Antenna System," Energies, MDPI, vol. 11(4), pages 1-8, April.
    3. Can Aksakal & Altug Sisman, 2018. "On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 11(1), pages 1-14, January.
    4. Shaojie Ai & Jia Song & Guobiao Cai, 2022. "Sequence-to-Sequence Remaining Useful Life Prediction of the Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel Fusion Transformer Network Solution," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    5. Sunghun Jung & Yonghyeon Jo & Young-Joon Kim, 2019. "Flight Time Estimation for Continuous Surveillance Missions Using a Multirotor UAV," Energies, MDPI, vol. 12(5), pages 1-15, March.
    6. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
    7. Aaron Shmaryahu & Nissim Amar & Alexander Ivanov & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1323-:d:220532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.