IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4239-d284323.html
   My bibliography  Save this article

Optimal Capacitor Bank Allocation in Electricity Distribution Networks Using Metaheuristic Algorithms

Author

Listed:
  • Ovidiu Ivanov

    (Department of Power Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Bogdan-Constantin Neagu

    (Department of Power Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Gheorghe Grigoras

    (Department of Power Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Mihai Gavrilas

    (Department of Power Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

Abstract

Energy losses and bus voltage levels are key parameters in the operation of electricity distribution networks (EDN), in traditional operating conditions or in modern microgrids with renewable and distributed generation sources. Smart grids are set to bring hardware and software tools to improve the operation of electrical networks, using state-of the art demand management at home or system level and advanced network reconfiguration tools. However, for economic reasons, many network operators will still have to resort to low-cost management solutions, such as bus reactive power compensation using optimally placed capacitor banks. This paper approaches the problem of power and energy loss minimization by optimal allocation of capacitor banks (CB) in medium voltage (MV) EDN buses. A comparison is made between five metaheuristic algorithms used for this purpose: the well-established Genetic Algorithm (GA); Particle Swarm Optimization (PSO); and three newer metaheuristics, the Bat Optimization Algorithm (BOA), the Whale Optimization Algorithm (WOA) and the Sperm-Whale Algorithm (SWA). The algorithms are tested on the IEEE 33-bus system and on a real 215-bus EDN from Romania. The newest SWA algorithm gives the best results, for both test systems.

Suggested Citation

  • Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2019. "Optimal Capacitor Bank Allocation in Electricity Distribution Networks Using Metaheuristic Algorithms," Energies, MDPI, vol. 12(22), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4239-:d:284323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahir Sahli & Abdellatif Hamouda & Abdelghani Bekrar & Damien Trentesaux, 2018. "Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm †," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Sneha Sultana & Provas Kumar Roy, 2018. "Capacitor Placement in Radial Distribution System Using Oppositional Cuckoo Optimization Algorithm," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 9(3), pages 64-95, July.
    3. Primitivo Díaz & Marco Pérez-Cisneros & Erik Cuevas & Omar Avalos & Jorge Gálvez & Salvador Hinojosa & Daniel Zaldivar, 2018. "An Improved Crow Search Algorithm Applied to Energy Problems," Energies, MDPI, vol. 11(3), pages 1-22, March.
    4. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    5. Fengli Jiang & Yichi Zhang & Yu Zhang & Xiaomeng Liu & Chunling Chen, 2019. "An Adaptive Particle Swarm Optimization Algorithm Based on Guiding Strategy and Its Application in Reactive Power Optimization," Energies, MDPI, vol. 12(9), pages 1-14, May.
    6. Chandan Kishore & Smarajit Ghosh & Vinod Karar, 2018. "Symmetric Fuzzy Logic and IBFOA Solutions for Optimal Position and Rating of Capacitors Allocated to Radial Distribution Networks," Energies, MDPI, vol. 11(4), pages 1-14, March.
    7. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Jaime A. Valencia-Velásquez, 2018. "A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minsheng Yang & Jianqi Li & Rui Du & Jianying Li & Jian Sun & Xiaofang Yuan & Jiazhu Xu & Shifu Huang, 2022. "Reactive Power Optimization Model for Distribution Networks Based on the Second-Order Cone and Interval Optimization," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Meraa Arab & Waleed Fadel, 2024. "Optimal Reactive Power Flow of AC-DC Power System with Shunt Capacitors Using Backtracking Search Algorithm," Energies, MDPI, vol. 17(3), pages 1-15, February.
    3. Shailendra Rajput & Ido Amiel & Moshe Sitbon & Ilan Aharon & Moshe Averbukh, 2020. "Control the Voltage Instabilities of Distribution Lines using Capacitive Reactive Power," Energies, MDPI, vol. 13(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asma Meddeb & Nesrine Amor & Mohamed Abbes & Souad Chebbi, 2018. "A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(12), pages 1-16, November.
    2. Park, Sung-Won & Son, Sung-Yong, 2020. "Interaction-based virtual power plant operation methodology for distribution system operator’s voltage management," Applied Energy, Elsevier, vol. 271(C).
    3. Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
    4. Sulaiman Z. Almutairi & Emad A. Mohamed & Fayez F. M. El-Sousy, 2023. "A Novel Adaptive Manta-Ray Foraging Optimization for Stochastic ORPD Considering Uncertainties of Wind Power and Load Demand," Mathematics, MDPI, vol. 11(11), pages 1-35, June.
    5. Mohamed Ebeed & Ayman Alhejji & Salah Kamel & Francisco Jurado, 2020. "Solving the Optimal Reactive Power Dispatch Using Marine Predators Algorithm Considering the Uncertainties in Load and Wind-Solar Generation Systems," Energies, MDPI, vol. 13(17), pages 1-19, August.
    6. Chandrasekaran Venkatesan & Raju Kannadasan & Mohammed H. Alsharif & Mun-Kyeom Kim & Jamel Nebhen, 2021. "A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems," Sustainability, MDPI, vol. 13(6), pages 1-34, March.
    7. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    8. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Almoataz Y. Abdelaziz & Hassan Haes Alhelou, 2021. "Scenario-Based Stochastic Framework for Optimal Planning of Distribution Systems Including Renewable-Based DG Units," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    9. Jahedul Islam & Md Shokor A. Rahaman & Pandian M. Vasant & Berihun Mamo Negash & Ahshanul Hoqe & Hitmi Khalifa Alhitmi & Junzo Watada, 2021. "A Modified Niching Crow Search Approach to Well Placement Optimization," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    11. Chengjun Xia & Xia Hua & Zhen Wang & Zhenlin Huang, 2018. "Analytical Calculation for Multi-Infeed Interaction Factors Considering Control Modes of High Voltage Direct Current Links," Energies, MDPI, vol. 11(6), pages 1-19, June.
    12. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    13. Hao He & Jia Li & Weizhe Zhao & Boyang Li & Yalong Li, 2022. "Reactive Power and Voltage Optimization of New-Energy Grid Based on the Improved Flower Pollination Algorithm," Energies, MDPI, vol. 15(10), pages 1-12, May.
    14. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    15. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    16. Zohaib Hussain Leghari & Mohammad Yusri Hassan & Dalila Mat Said & Laveet Kumar & Mahesh Kumar & Quynh T. Tran & Eleonora Riva Sanseverino, 2023. "Effective Utilization of Distributed Power Sources under Power Mismatch Conditions in Islanded Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-21, March.
    17. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    18. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    19. Mohammadhafez Bazrafshan & Likhitha Yalamanchili & Nikolaos Gatsis & Juan Gomez, 2019. "Stochastic Planning of Distributed PV Generation," Energies, MDPI, vol. 12(3), pages 1-20, January.
    20. Thuan Thanh Nguyen & Bach Hoang Dinh & Thai Dinh Pham & Thang Trung Nguyen, 2020. "Active Power Loss Reduction for Radial Distribution Systems by Placing Capacitors and PV Systems with Geography Location Constraints," Sustainability, MDPI, vol. 12(18), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4239-:d:284323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.