IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3513-d266635.html
   My bibliography  Save this article

A Comparison of the Dynamic Performance of Conventional and Ternary Pumped Storage Hydro

Author

Listed:
  • Soumyadeep Nag

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76706, USA)

  • Kwang Y. Lee

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76706, USA)

  • D. Suchitra

    (Department of Electrical Engineering, SRM University, Kattankulathur 603203, India)

Abstract

With decreasing costs of renewable energy harvesting devices, penetration of solar panels and wind turbines have increased manifold. Under such high levels of penetration, coping with increased intermittency and unpredictability and maintaining power system resiliency under reduced inertia conditions has become a critical issue. Pumped storage hydro (PSH) is the most matured and economic form of storage that can serve the purpose of capacity for over 4 to 8 h. However, to increase network inertia and add required flexibility to low inertia power systems, significant paradigm shifting modifications have been engineered to result in the development of Ternary PSH (TPSH). In this paper a test system to consider governor interaction is constructed. The dynamic models of conventional PSH (CPSH) and TPSH are constructed and integrated to the test system to examine the effect of CPSH and TPSH in the hydraulic short circuit (TPSH-HSC). The ability and the effect of mode change (from pump to turbine) without the loss synchronism of TPSH has also been examined. Results display the superior capability and effect of TPSH with its HSC capability to contribute to frequency regulation during pumping mode and the effect of rapid mode change, as compared to its primitive alternative, CPSH.

Suggested Citation

  • Soumyadeep Nag & Kwang Y. Lee & D. Suchitra, 2019. "A Comparison of the Dynamic Performance of Conventional and Ternary Pumped Storage Hydro," Energies, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3513-:d:266635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3513/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Michela Robba & Mansueto Rossi, 2021. "Optimal Control of Hybrid Systems and Renewable Energies," Energies, MDPI, vol. 15(1), pages 1-3, December.
    4. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    5. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.
    6. Soumyadeep Nag & Kwang Y. Lee, 2021. "Neural Network-Based Control for Hybrid PV and Ternary Pumped-Storage Hydro Plants," Energies, MDPI, vol. 14(15), pages 1-23, July.
    7. Soumyadeep Nag & Kwang Y. Lee, 2020. "Network and Reserve Constrained Economic Analysis of Conventional, Adjustable-Speed and Ternary Pumped-Storage Hydropower," Energies, MDPI, vol. 13(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3513-:d:266635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.