IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p54-d193089.html
   My bibliography  Save this article

China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles

Author

Listed:
  • Zhixiang Liu

    (Guangdong Key Lab for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
    Foshan (Yunfu) Research Institute for Hydrogen Energy & New Material Development, Yunfu 527300, China
    Guangdong Nation-Synergy Hydrogen Power Technologies Co. Ltd., Yunfu 527300, China)

  • Kevin Kendall

    (School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK)

  • Xieqiang Yan

    (Guangdong Key Lab for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
    Foshan (Yunfu) Research Institute for Hydrogen Energy & New Material Development, Yunfu 527300, China
    Guangdong Nation-Synergy Hydrogen Power Technologies Co. Ltd., Yunfu 527300, China)

Abstract

Clean, renewable energy for Chinese cities is a priority in air quality improvement. This paper describes the recent Chinese advances in Polymer Electrolyte Membrane (PEM) hydrogen-fuel-cell-battery vehicles, including buses and trucks. Following the 2016 Chinese government plan for new energy vehicles, bus production in Foshan has now overtaken that in the EU, USA and Japan combined. Hydrogen infrastructure requires much advance to catch up but numbers of filling stations are now increasing rapidly in the large cities. A particular benefit in China is the large number of battery manufacturing companies which fit well into the energy storage plan for hybrid fuel cell buses. The first city to manufacture thousands of PEM-battery hybrid buses is Foshan where the Feichi (Allenbus) company has built a new factory next to a novel fuel cell production line capable of producing 500 MW of fuel cell units per year. Hundreds of these buses are running on local Foshan routes this year, while production of city delivery trucks has also been substantial. Results for energy consumption of these vehicles are presented and fitted to the Coulomb theory previously delineated.

Suggested Citation

  • Zhixiang Liu & Kevin Kendall & Xieqiang Yan, 2018. "China Progress on Renewable Energy Vehicles: Fuel Cells, Hydrogen and Battery Hybrid Vehicles," Energies, MDPI, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:54-:d:193089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/54/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqi Yuan & May Tan-Mullins, 2023. "An Innovative Approach for Energy Transition in China? Chinese National Hydrogen Policies from 2001 to 2020," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    2. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    3. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    4. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    5. Le Quyen Luu & Eleonora Riva Sanseverino & Maurizio Cellura & Hoai-Nam Nguyen & Hoai-Phuong Tran & Hong Anh Nguyen, 2022. "Life Cycle Energy Consumption and Air Emissions Comparison of Alternative and Conventional Bus Fleets in Vietnam," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:54-:d:193089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.